Thomas Hilberath, Frank Hollmann, Florian Tieves, Wuyuan Zhang
{"title":"过氧酶催化的氧化官能化反应。","authors":"Thomas Hilberath, Frank Hollmann, Florian Tieves, Wuyuan Zhang","doi":"10.1016/bs.mie.2025.01.041","DOIUrl":null,"url":null,"abstract":"<p><p>Peroxygenases represent a class of versatile heme-thiolate enzymes capable of catalysing highly selective oxyfunctionalisation reactions, particularly the hydroxylation of non-activated C-H bonds. This transformation, which poses substantial challenges in conventional organic synthesis, underscores the potential of peroxygenases in green chemistry applications. While cytochrome P450 monooxygenases have long been the primary focus for such biocatalytic transformations, their industrial adoption has been limited due to complex electron transfer chains and cofactor requirements. In contrast, peroxygenases bypass these limitations by directly utilising hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to activate the catalytic heme site, thereby circumventing the oxygen dilemma typically encountered in P450 catalysis. Key milestones in peroxygenase research include the identification of chloroperoxidase from Caldariomyces fumago and the subsequent discovery of unspecific peroxygenases, such as those from Agrocybe aegerita, which exhibit broad substrate specificity and high catalytic efficiency. Here, we explore the mechanistic pathway of peroxygenase-catalysed reactions, emphasising the formation and decay of Compound I and the catalytic cycle's various functional outcomes. Critical aspects such as in situ H<sub>2</sub>O<sub>2</sub> generation to mitigate enzyme inactivation, substrate loading strategies for practical applications, and the role of enzyme and reaction engineering in enhancing regio- and stereoselectivity are examined. Additionally, we address challenges in reaction scalability and operational stability for preparative-scale applications, offering insights into innovative protocols involving immobilised enzymes and non-aqueous reaction media. This review highlights recent advancements in the peroxygenase field and underscores the enzyme's promising role in sustainable oxyfunctionalisation reactions.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"714 ","pages":"425-443"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peroxygenase-catalysed oxyfunctionalisation reactions.\",\"authors\":\"Thomas Hilberath, Frank Hollmann, Florian Tieves, Wuyuan Zhang\",\"doi\":\"10.1016/bs.mie.2025.01.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peroxygenases represent a class of versatile heme-thiolate enzymes capable of catalysing highly selective oxyfunctionalisation reactions, particularly the hydroxylation of non-activated C-H bonds. This transformation, which poses substantial challenges in conventional organic synthesis, underscores the potential of peroxygenases in green chemistry applications. While cytochrome P450 monooxygenases have long been the primary focus for such biocatalytic transformations, their industrial adoption has been limited due to complex electron transfer chains and cofactor requirements. In contrast, peroxygenases bypass these limitations by directly utilising hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to activate the catalytic heme site, thereby circumventing the oxygen dilemma typically encountered in P450 catalysis. Key milestones in peroxygenase research include the identification of chloroperoxidase from Caldariomyces fumago and the subsequent discovery of unspecific peroxygenases, such as those from Agrocybe aegerita, which exhibit broad substrate specificity and high catalytic efficiency. Here, we explore the mechanistic pathway of peroxygenase-catalysed reactions, emphasising the formation and decay of Compound I and the catalytic cycle's various functional outcomes. Critical aspects such as in situ H<sub>2</sub>O<sub>2</sub> generation to mitigate enzyme inactivation, substrate loading strategies for practical applications, and the role of enzyme and reaction engineering in enhancing regio- and stereoselectivity are examined. Additionally, we address challenges in reaction scalability and operational stability for preparative-scale applications, offering insights into innovative protocols involving immobilised enzymes and non-aqueous reaction media. This review highlights recent advancements in the peroxygenase field and underscores the enzyme's promising role in sustainable oxyfunctionalisation reactions.</p>\",\"PeriodicalId\":18662,\"journal\":{\"name\":\"Methods in enzymology\",\"volume\":\"714 \",\"pages\":\"425-443\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in enzymology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mie.2025.01.041\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.01.041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Peroxygenases represent a class of versatile heme-thiolate enzymes capable of catalysing highly selective oxyfunctionalisation reactions, particularly the hydroxylation of non-activated C-H bonds. This transformation, which poses substantial challenges in conventional organic synthesis, underscores the potential of peroxygenases in green chemistry applications. While cytochrome P450 monooxygenases have long been the primary focus for such biocatalytic transformations, their industrial adoption has been limited due to complex electron transfer chains and cofactor requirements. In contrast, peroxygenases bypass these limitations by directly utilising hydrogen peroxide (H2O2) to activate the catalytic heme site, thereby circumventing the oxygen dilemma typically encountered in P450 catalysis. Key milestones in peroxygenase research include the identification of chloroperoxidase from Caldariomyces fumago and the subsequent discovery of unspecific peroxygenases, such as those from Agrocybe aegerita, which exhibit broad substrate specificity and high catalytic efficiency. Here, we explore the mechanistic pathway of peroxygenase-catalysed reactions, emphasising the formation and decay of Compound I and the catalytic cycle's various functional outcomes. Critical aspects such as in situ H2O2 generation to mitigate enzyme inactivation, substrate loading strategies for practical applications, and the role of enzyme and reaction engineering in enhancing regio- and stereoselectivity are examined. Additionally, we address challenges in reaction scalability and operational stability for preparative-scale applications, offering insights into innovative protocols involving immobilised enzymes and non-aqueous reaction media. This review highlights recent advancements in the peroxygenase field and underscores the enzyme's promising role in sustainable oxyfunctionalisation reactions.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.