损伤、恢复和修复如何改变热应力对健康的影响。

IF 2.2 3区 生物学 Q1 ZOOLOGY
Lauren B Buckley, Raymond B Huey, Chun-Sen Ma
{"title":"损伤、恢复和修复如何改变热应力对健康的影响。","authors":"Lauren B Buckley, Raymond B Huey, Chun-Sen Ma","doi":"10.1093/icb/icaf019","DOIUrl":null,"url":null,"abstract":"<p><p>The fitness implications of climate variability and change are often estimated by integrating an organism's thermal sensitivity of performance across a time series of experienced body temperatures. Although this approach is an important first step in evaluating an organism's sensitivity to climate or climate change, it ignores potential influences of recent exposure to thermal stress on current thermal sensitivity. Here we account for recent thermal stress by estimating rates of damage, repair, and other carryover effects; and we illustrate the approach with fecundity and development rate data from experiments that exposed aphids to various stressful and fluctuating temperatures. Our analyses indicate that heat stress for these aphids starts near the upper thermal limit for performance; that heat stress intensifies with both the exposure duration and with temperature; and that there is considerable capacity for repair at temperatures near the thermal optimum for performance. Results from experiments with aphids indicate that incorporating time series of damage, recovery, and repair will be necessary to anticipate fitness outcomes of climate change and variability.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How damage, recovery, and repair alter the fitness impacts of thermal stress.\",\"authors\":\"Lauren B Buckley, Raymond B Huey, Chun-Sen Ma\",\"doi\":\"10.1093/icb/icaf019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fitness implications of climate variability and change are often estimated by integrating an organism's thermal sensitivity of performance across a time series of experienced body temperatures. Although this approach is an important first step in evaluating an organism's sensitivity to climate or climate change, it ignores potential influences of recent exposure to thermal stress on current thermal sensitivity. Here we account for recent thermal stress by estimating rates of damage, repair, and other carryover effects; and we illustrate the approach with fecundity and development rate data from experiments that exposed aphids to various stressful and fluctuating temperatures. Our analyses indicate that heat stress for these aphids starts near the upper thermal limit for performance; that heat stress intensifies with both the exposure duration and with temperature; and that there is considerable capacity for repair at temperatures near the thermal optimum for performance. Results from experiments with aphids indicate that incorporating time series of damage, recovery, and repair will be necessary to anticipate fitness outcomes of climate change and variability.</p>\",\"PeriodicalId\":54971,\"journal\":{\"name\":\"Integrative and Comparative Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative and Comparative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/icb/icaf019\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icaf019","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

气候变率和变化的适应度含义通常是通过整合生物体在经历体温的时间序列中的表现的热敏性来估计的。虽然这种方法是评估生物体对气候或气候变化敏感性的重要的第一步,但它忽略了最近暴露于热应力对当前热敏感性的潜在影响。在这里,我们通过估计损坏率、修复率和其他遗留效应来解释最近的热应力;我们用蚜虫暴露在各种压力和波动的温度下的实验中的繁殖力和发育率数据来说明这种方法。我们的分析表明,这些蚜虫的热应激开始于性能的热上限附近;热应力随暴露时间和温度的增加而增强;并且在接近最佳性能的温度下有相当大的修复能力。蚜虫实验的结果表明,纳入损害、恢复和修复的时间序列对于预测气候变化和变异的适应性结果是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How damage, recovery, and repair alter the fitness impacts of thermal stress.

The fitness implications of climate variability and change are often estimated by integrating an organism's thermal sensitivity of performance across a time series of experienced body temperatures. Although this approach is an important first step in evaluating an organism's sensitivity to climate or climate change, it ignores potential influences of recent exposure to thermal stress on current thermal sensitivity. Here we account for recent thermal stress by estimating rates of damage, repair, and other carryover effects; and we illustrate the approach with fecundity and development rate data from experiments that exposed aphids to various stressful and fluctuating temperatures. Our analyses indicate that heat stress for these aphids starts near the upper thermal limit for performance; that heat stress intensifies with both the exposure duration and with temperature; and that there is considerable capacity for repair at temperatures near the thermal optimum for performance. Results from experiments with aphids indicate that incorporating time series of damage, recovery, and repair will be necessary to anticipate fitness outcomes of climate change and variability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信