Chau Thuy Tien Le, Ki-Hye Kim, Jannatul Ruhan Raha, Noopur Bhatnagar, Surya Sekhar Pal, Phillip Grovenstein, Mahmuda Yeasmin, Rong Liu, Bao-Zhong Wang, Sang-Moo Kang
{"title":"乙型流感病毒神经氨酸酶mRNA疫苗通过补充灭活分裂疫苗增强跨系保护的双重作用","authors":"Chau Thuy Tien Le, Ki-Hye Kim, Jannatul Ruhan Raha, Noopur Bhatnagar, Surya Sekhar Pal, Phillip Grovenstein, Mahmuda Yeasmin, Rong Liu, Bao-Zhong Wang, Sang-Moo Kang","doi":"10.1128/jvi.02294-24","DOIUrl":null,"url":null,"abstract":"<p><p>The current influenza vaccine is based on immunity to hemagglutinin (HA) and provides poor cross-protection. Here, we generated mRNA vaccine encoding influenza B virus (IBV) neuraminidase (NA) conjugated to influenza A virus M2 ectodomain (M2e), encapsulated in lipid nanoparticles (LNP), capable of inducing cross-lineage IBV protection in a dose-dependent pattern. The combination of low-dose NA mRNA and inactivated split IBV vaccines was found to induce significantly higher levels of cross-reactive IgG responses, NA and HA inhibition titers, effector and memory cellular immune responses as well as cross-lineage protection than either NA mRNA or split vaccine alone. This study suggests that the NA mRNA vaccine not only provides cross-lineage protection with a high dose but also enhances the cross-protective efficacy of the combined low-dose NA mRNA and split vaccines. Our findings support a new strategy of using mRNA LNP-supplemented conventional vaccination to enhance cross-protection.IMPORTANCEThis study highlights a significant advancement in influenza vaccination strategies. To test a new vaccination strategy, we developed an influenza B virus (IBV) neuraminidase (NA) mRNA vaccine which could provide cross-lineage protection at a high dose. More importantly, the co-administration of NA mRNA and split IBV vaccine at low doses was found to significantly enhance the hemagglutinin and NA immunity as well as cross-lineage protection of seasonal IBV vaccines. This proof-of-concept study provides evidence for a novel strategy to enhance the immunogenicity and cross-protective efficacy of conventional vaccines by supplementing with new targets of mRNA vaccines.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0229424"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090766/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual roles of influenza B virus neuraminidase mRNA vaccine in enhancing cross-lineage protection by supplementing inactivated split vaccination.\",\"authors\":\"Chau Thuy Tien Le, Ki-Hye Kim, Jannatul Ruhan Raha, Noopur Bhatnagar, Surya Sekhar Pal, Phillip Grovenstein, Mahmuda Yeasmin, Rong Liu, Bao-Zhong Wang, Sang-Moo Kang\",\"doi\":\"10.1128/jvi.02294-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current influenza vaccine is based on immunity to hemagglutinin (HA) and provides poor cross-protection. Here, we generated mRNA vaccine encoding influenza B virus (IBV) neuraminidase (NA) conjugated to influenza A virus M2 ectodomain (M2e), encapsulated in lipid nanoparticles (LNP), capable of inducing cross-lineage IBV protection in a dose-dependent pattern. The combination of low-dose NA mRNA and inactivated split IBV vaccines was found to induce significantly higher levels of cross-reactive IgG responses, NA and HA inhibition titers, effector and memory cellular immune responses as well as cross-lineage protection than either NA mRNA or split vaccine alone. This study suggests that the NA mRNA vaccine not only provides cross-lineage protection with a high dose but also enhances the cross-protective efficacy of the combined low-dose NA mRNA and split vaccines. Our findings support a new strategy of using mRNA LNP-supplemented conventional vaccination to enhance cross-protection.IMPORTANCEThis study highlights a significant advancement in influenza vaccination strategies. To test a new vaccination strategy, we developed an influenza B virus (IBV) neuraminidase (NA) mRNA vaccine which could provide cross-lineage protection at a high dose. More importantly, the co-administration of NA mRNA and split IBV vaccine at low doses was found to significantly enhance the hemagglutinin and NA immunity as well as cross-lineage protection of seasonal IBV vaccines. This proof-of-concept study provides evidence for a novel strategy to enhance the immunogenicity and cross-protective efficacy of conventional vaccines by supplementing with new targets of mRNA vaccines.</p>\",\"PeriodicalId\":17583,\"journal\":{\"name\":\"Journal of Virology\",\"volume\":\" \",\"pages\":\"e0229424\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090766/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/jvi.02294-24\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.02294-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
Dual roles of influenza B virus neuraminidase mRNA vaccine in enhancing cross-lineage protection by supplementing inactivated split vaccination.
The current influenza vaccine is based on immunity to hemagglutinin (HA) and provides poor cross-protection. Here, we generated mRNA vaccine encoding influenza B virus (IBV) neuraminidase (NA) conjugated to influenza A virus M2 ectodomain (M2e), encapsulated in lipid nanoparticles (LNP), capable of inducing cross-lineage IBV protection in a dose-dependent pattern. The combination of low-dose NA mRNA and inactivated split IBV vaccines was found to induce significantly higher levels of cross-reactive IgG responses, NA and HA inhibition titers, effector and memory cellular immune responses as well as cross-lineage protection than either NA mRNA or split vaccine alone. This study suggests that the NA mRNA vaccine not only provides cross-lineage protection with a high dose but also enhances the cross-protective efficacy of the combined low-dose NA mRNA and split vaccines. Our findings support a new strategy of using mRNA LNP-supplemented conventional vaccination to enhance cross-protection.IMPORTANCEThis study highlights a significant advancement in influenza vaccination strategies. To test a new vaccination strategy, we developed an influenza B virus (IBV) neuraminidase (NA) mRNA vaccine which could provide cross-lineage protection at a high dose. More importantly, the co-administration of NA mRNA and split IBV vaccine at low doses was found to significantly enhance the hemagglutinin and NA immunity as well as cross-lineage protection of seasonal IBV vaccines. This proof-of-concept study provides evidence for a novel strategy to enhance the immunogenicity and cross-protective efficacy of conventional vaccines by supplementing with new targets of mRNA vaccines.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.