diffi - 3dcap:形状字幕与扩散模型。

Zhenyu Shu, Jiawei Wen, Shiyang Li, Shiqing Xin, Ligang Liu
{"title":"diffi - 3dcap:形状字幕与扩散模型。","authors":"Zhenyu Shu, Jiawei Wen, Shiyang Li, Shiqing Xin, Ligang Liu","doi":"10.1109/TVCG.2025.3564664","DOIUrl":null,"url":null,"abstract":"<p><p>The task of 3D shape captioning occupies a significant place within the domain of computer graphics and has garnered considerable interest in recent years. Traditional approaches to this challenge frequently depend on the utilization of costly voxel representations or object detection techniques, yet often fail to deliver satisfactory outcomes. To address the above challenges, in this paper, we introduce Diff-3DCap, which employs a sequence of projected views to represent a 3D object and a continuous diffusion model to facilitate the captioning process. More precisely, our approach utilizes the continuous diffusion model to perturb the embedded captions during the forward phase by introducing Gaussian noise and then predicts the reconstructed annotation during the reverse phase. Embedded within the diffusion framework is a commitment to leveraging a visual embedding obtained from a pre-trained visual-language model, which naturally allows the embedding to serve as a guiding signal, eliminating the need for an additional classifier. Extensive results of our experiments indicate that Diff-3DCap can achieve performance comparable to that of the current state-of-the-art methods.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diff-3DCap: Shape Captioning With Diffusion Models.\",\"authors\":\"Zhenyu Shu, Jiawei Wen, Shiyang Li, Shiqing Xin, Ligang Liu\",\"doi\":\"10.1109/TVCG.2025.3564664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The task of 3D shape captioning occupies a significant place within the domain of computer graphics and has garnered considerable interest in recent years. Traditional approaches to this challenge frequently depend on the utilization of costly voxel representations or object detection techniques, yet often fail to deliver satisfactory outcomes. To address the above challenges, in this paper, we introduce Diff-3DCap, which employs a sequence of projected views to represent a 3D object and a continuous diffusion model to facilitate the captioning process. More precisely, our approach utilizes the continuous diffusion model to perturb the embedded captions during the forward phase by introducing Gaussian noise and then predicts the reconstructed annotation during the reverse phase. Embedded within the diffusion framework is a commitment to leveraging a visual embedding obtained from a pre-trained visual-language model, which naturally allows the embedding to serve as a guiding signal, eliminating the need for an additional classifier. Extensive results of our experiments indicate that Diff-3DCap can achieve performance comparable to that of the current state-of-the-art methods.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3564664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3564664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三维形状标注在计算机图形学领域占有重要地位,近年来引起了人们的极大兴趣。应对这一挑战的传统方法往往依赖于使用昂贵的体素表示或目标检测技术,但往往无法提供令人满意的结果。为了解决上述挑战,本文引入了Diff-3DCap,它使用一系列投影视图来表示3D对象,并使用连续扩散模型来简化字幕过程。更精确地说,我们的方法利用连续扩散模型在正向阶段通过引入高斯噪声对嵌入的注释进行扰动,然后在反向阶段预测重构的注释。在扩散框架中嵌入的是利用从预训练的视觉语言模型中获得的视觉嵌入的承诺,这自然允许嵌入作为指导信号,消除了对额外分类器的需要。我们的大量实验结果表明,Diff-3DCap可以达到与当前最先进的方法相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diff-3DCap: Shape Captioning With Diffusion Models.

The task of 3D shape captioning occupies a significant place within the domain of computer graphics and has garnered considerable interest in recent years. Traditional approaches to this challenge frequently depend on the utilization of costly voxel representations or object detection techniques, yet often fail to deliver satisfactory outcomes. To address the above challenges, in this paper, we introduce Diff-3DCap, which employs a sequence of projected views to represent a 3D object and a continuous diffusion model to facilitate the captioning process. More precisely, our approach utilizes the continuous diffusion model to perturb the embedded captions during the forward phase by introducing Gaussian noise and then predicts the reconstructed annotation during the reverse phase. Embedded within the diffusion framework is a commitment to leveraging a visual embedding obtained from a pre-trained visual-language model, which naturally allows the embedding to serve as a guiding signal, eliminating the need for an additional classifier. Extensive results of our experiments indicate that Diff-3DCap can achieve performance comparable to that of the current state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信