Álvaro Lorente-Arévalo, María Gimeno-Pérez, Carmen Ortega, James Finnigan, Simon Charnock, Aurelio Hidalgo
{"title":"pet降解酶的超高通量筛选试验。","authors":"Álvaro Lorente-Arévalo, María Gimeno-Pérez, Carmen Ortega, James Finnigan, Simon Charnock, Aurelio Hidalgo","doi":"10.1016/bs.mie.2025.01.021","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, several PET-degrading enzymes have been identified from both known microorganisms and metagenomic sources in response to the growing environmental issue of polyethylene terephthalate (PET) accumulation. Despite this progress, there is a limited number of (ultra)high-throughput screening methods for assessing PET-hydrolyzing activity without relying on surrogate substrates. This method utilizes the coupled activity of ketoreductases (KREDs) and diaphorase to produce a fluorescent compound (resorufin) in the presence of PET degradation products, offering a more direct and efficient screening approach. A metagenomic KRED was coupled with the diaphorase from Clostridium kluyveri to enable the detection of the hydrolysis of PET degradation products catalyzed by the Bacillus subtilis BS2 esterase. The coupled reaction was established in water-in-oil microdroplets, encapsulating a single E. coli cell per droplet, demonstrating its potential for use in the ultrahigh-throughput screening of metagenomic libraries or randomized libraries for directed evolution campaigns.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"714 ","pages":"489-503"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh-throughput screening assay for PET-degrading enzymes.\",\"authors\":\"Álvaro Lorente-Arévalo, María Gimeno-Pérez, Carmen Ortega, James Finnigan, Simon Charnock, Aurelio Hidalgo\",\"doi\":\"10.1016/bs.mie.2025.01.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, several PET-degrading enzymes have been identified from both known microorganisms and metagenomic sources in response to the growing environmental issue of polyethylene terephthalate (PET) accumulation. Despite this progress, there is a limited number of (ultra)high-throughput screening methods for assessing PET-hydrolyzing activity without relying on surrogate substrates. This method utilizes the coupled activity of ketoreductases (KREDs) and diaphorase to produce a fluorescent compound (resorufin) in the presence of PET degradation products, offering a more direct and efficient screening approach. A metagenomic KRED was coupled with the diaphorase from Clostridium kluyveri to enable the detection of the hydrolysis of PET degradation products catalyzed by the Bacillus subtilis BS2 esterase. The coupled reaction was established in water-in-oil microdroplets, encapsulating a single E. coli cell per droplet, demonstrating its potential for use in the ultrahigh-throughput screening of metagenomic libraries or randomized libraries for directed evolution campaigns.</p>\",\"PeriodicalId\":18662,\"journal\":{\"name\":\"Methods in enzymology\",\"volume\":\"714 \",\"pages\":\"489-503\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in enzymology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mie.2025.01.021\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2025.01.021","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Ultrahigh-throughput screening assay for PET-degrading enzymes.
In recent years, several PET-degrading enzymes have been identified from both known microorganisms and metagenomic sources in response to the growing environmental issue of polyethylene terephthalate (PET) accumulation. Despite this progress, there is a limited number of (ultra)high-throughput screening methods for assessing PET-hydrolyzing activity without relying on surrogate substrates. This method utilizes the coupled activity of ketoreductases (KREDs) and diaphorase to produce a fluorescent compound (resorufin) in the presence of PET degradation products, offering a more direct and efficient screening approach. A metagenomic KRED was coupled with the diaphorase from Clostridium kluyveri to enable the detection of the hydrolysis of PET degradation products catalyzed by the Bacillus subtilis BS2 esterase. The coupled reaction was established in water-in-oil microdroplets, encapsulating a single E. coli cell per droplet, demonstrating its potential for use in the ultrahigh-throughput screening of metagenomic libraries or randomized libraries for directed evolution campaigns.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.