Jérémy Marchand, Estelle Martineau, Jonathan Farjon, Patrick Giraudeau
{"title":"两种HSQC方法对代谢物绝对定量的分析比较。","authors":"Jérémy Marchand, Estelle Martineau, Jonathan Farjon, Patrick Giraudeau","doi":"10.1002/mrc.5525","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple 2D HSQC NMR methods have been developed for the absolute quantitation of metabolites in complex mixtures without need for external calibration or standard additions. However, analytical comparison between these methods is lacking. This study aims at comparing the performance of two \"intrinsically quantitative\" heteronuclear methods for the targeted quantitation of metabolite mixtures: HSQC<sub>0</sub> and Q QUIPU HSQC. Each method was applied on a model metabolite mixture in the same total experiment time. Both methods were accelerated with non-uniform sampling (NUS), then further accelerated by combining NUS with variation of the pulse sequence repetition time (VRT). Multiple analytical metrics were evaluated and compared for quantitation, including trueness, repeatability, and sensitivity. Globally, accelerated versions of the pulse sequences, using NUS and VRT, performed better than NUS-only acquisitions. On the one hand, provided enough sensitivity is achieved, better performance was observed for HSQC<sub>0</sub>, which also appears as a more user-friendly technique. On the other hand, Q QUIPU HSQC was shown to be more repeatable and more sensitive.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Comparison of Two Quantitative HSQC Methods for the Absolute Quantitation of Metabolites.\",\"authors\":\"Jérémy Marchand, Estelle Martineau, Jonathan Farjon, Patrick Giraudeau\",\"doi\":\"10.1002/mrc.5525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple 2D HSQC NMR methods have been developed for the absolute quantitation of metabolites in complex mixtures without need for external calibration or standard additions. However, analytical comparison between these methods is lacking. This study aims at comparing the performance of two \\\"intrinsically quantitative\\\" heteronuclear methods for the targeted quantitation of metabolite mixtures: HSQC<sub>0</sub> and Q QUIPU HSQC. Each method was applied on a model metabolite mixture in the same total experiment time. Both methods were accelerated with non-uniform sampling (NUS), then further accelerated by combining NUS with variation of the pulse sequence repetition time (VRT). Multiple analytical metrics were evaluated and compared for quantitation, including trueness, repeatability, and sensitivity. Globally, accelerated versions of the pulse sequences, using NUS and VRT, performed better than NUS-only acquisitions. On the one hand, provided enough sensitivity is achieved, better performance was observed for HSQC<sub>0</sub>, which also appears as a more user-friendly technique. On the other hand, Q QUIPU HSQC was shown to be more repeatable and more sensitive.</p>\",\"PeriodicalId\":18142,\"journal\":{\"name\":\"Magnetic Resonance in Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/mrc.5525\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/mrc.5525","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analytical Comparison of Two Quantitative HSQC Methods for the Absolute Quantitation of Metabolites.
Multiple 2D HSQC NMR methods have been developed for the absolute quantitation of metabolites in complex mixtures without need for external calibration or standard additions. However, analytical comparison between these methods is lacking. This study aims at comparing the performance of two "intrinsically quantitative" heteronuclear methods for the targeted quantitation of metabolite mixtures: HSQC0 and Q QUIPU HSQC. Each method was applied on a model metabolite mixture in the same total experiment time. Both methods were accelerated with non-uniform sampling (NUS), then further accelerated by combining NUS with variation of the pulse sequence repetition time (VRT). Multiple analytical metrics were evaluated and compared for quantitation, including trueness, repeatability, and sensitivity. Globally, accelerated versions of the pulse sequences, using NUS and VRT, performed better than NUS-only acquisitions. On the one hand, provided enough sensitivity is achieved, better performance was observed for HSQC0, which also appears as a more user-friendly technique. On the other hand, Q QUIPU HSQC was shown to be more repeatable and more sensitive.
期刊介绍:
MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published.
The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.