{"title":"基于造影增强超声电影的深度学习模型预测晚期肝癌对肝动脉输注化疗联合全身治疗的反应","authors":"Xu Han, Chuan Peng, Si-Min Ruan, Lingling Li, Minke He, Ming Shi, Bin Huang, Yudi Luo, Jingming Liu, Huiying Wen, Wei Wang, Jianhua Zhou, Minhua Lu, Xin Chen, Ruhai Zou, Zhong Liu","doi":"10.1111/cas.70089","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, a hepatic arterial infusion chemotherapy (HAIC)-associated combination therapeutic regimen, comprising HAIC and systemic therapies (molecular targeted therapy plus immunotherapy), referred to as HAIC combination therapy, has demonstrated promising anticancer effects. Identifying individuals who may potentially benefit from HAIC combination therapy could contribute to improved treatment decision-making for patients with advanced hepatocellular carcinoma (HCC). This dual-center study was a retrospective analysis of prospectively collected data with advanced HCC patients who underwent HAIC combination therapy and pretreatment contrast-enhanced ultrasound (CEUS) evaluations from March 2019 to March 2023. Two deep learning models, AE-3DNet and 3DNet, along with a time-intensity curve-based model, were developed for predicting therapeutic responses from pretreatment CEUS cine images. Diagnostic metrics, including the area under the receiver-operating-characteristic curve (AUC), were calculated to compare the performance of the models. Survival analysis was used to assess the relationship between predicted responses and prognostic outcomes. The model of AE-3DNet was constructed on the top of 3DNet, with innovative incorporation of spatiotemporal attention modules to enhance the capacity for dynamic feature extraction. 326 patients were included, 243 of whom formed the internal validation cohort, which was utilized for model development and fivefold cross-validation, while the rest formed the external validation cohort. Objective response (OR) or non-objective response (non-OR) were observed in 63% (206/326) and 37% (120/326) of the participants, respectively. Among the three efficacy prediction models assessed, AE-3DNet performed superiorly with AUC values of 0.84 and 0.85 in the internal and external validation cohorts, respectively. AE-3DNet's predicted response survival curves closely resembled actual clinical outcomes. The deep learning model of AE-3DNet developed based on pretreatment CEUS cine performed satisfactorily in predicting the responses of advanced HCC to HAIC combination therapy, which may serve as a promising tool for guiding combined therapy and individualized treatment strategies. Trial Registration: NCT02973685.</p>","PeriodicalId":48943,"journal":{"name":"Cancer Science","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Contrast-Enhanced Ultrasound Cine-Based Deep Learning Model for Predicting the Response of Advanced Hepatocellular Carcinoma to Hepatic Arterial Infusion Chemotherapy Combined With Systemic Therapies.\",\"authors\":\"Xu Han, Chuan Peng, Si-Min Ruan, Lingling Li, Minke He, Ming Shi, Bin Huang, Yudi Luo, Jingming Liu, Huiying Wen, Wei Wang, Jianhua Zhou, Minhua Lu, Xin Chen, Ruhai Zou, Zhong Liu\",\"doi\":\"10.1111/cas.70089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, a hepatic arterial infusion chemotherapy (HAIC)-associated combination therapeutic regimen, comprising HAIC and systemic therapies (molecular targeted therapy plus immunotherapy), referred to as HAIC combination therapy, has demonstrated promising anticancer effects. Identifying individuals who may potentially benefit from HAIC combination therapy could contribute to improved treatment decision-making for patients with advanced hepatocellular carcinoma (HCC). This dual-center study was a retrospective analysis of prospectively collected data with advanced HCC patients who underwent HAIC combination therapy and pretreatment contrast-enhanced ultrasound (CEUS) evaluations from March 2019 to March 2023. Two deep learning models, AE-3DNet and 3DNet, along with a time-intensity curve-based model, were developed for predicting therapeutic responses from pretreatment CEUS cine images. Diagnostic metrics, including the area under the receiver-operating-characteristic curve (AUC), were calculated to compare the performance of the models. Survival analysis was used to assess the relationship between predicted responses and prognostic outcomes. The model of AE-3DNet was constructed on the top of 3DNet, with innovative incorporation of spatiotemporal attention modules to enhance the capacity for dynamic feature extraction. 326 patients were included, 243 of whom formed the internal validation cohort, which was utilized for model development and fivefold cross-validation, while the rest formed the external validation cohort. Objective response (OR) or non-objective response (non-OR) were observed in 63% (206/326) and 37% (120/326) of the participants, respectively. Among the three efficacy prediction models assessed, AE-3DNet performed superiorly with AUC values of 0.84 and 0.85 in the internal and external validation cohorts, respectively. AE-3DNet's predicted response survival curves closely resembled actual clinical outcomes. The deep learning model of AE-3DNet developed based on pretreatment CEUS cine performed satisfactorily in predicting the responses of advanced HCC to HAIC combination therapy, which may serve as a promising tool for guiding combined therapy and individualized treatment strategies. Trial Registration: NCT02973685.</p>\",\"PeriodicalId\":48943,\"journal\":{\"name\":\"Cancer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/cas.70089\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cas.70089","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
A Contrast-Enhanced Ultrasound Cine-Based Deep Learning Model for Predicting the Response of Advanced Hepatocellular Carcinoma to Hepatic Arterial Infusion Chemotherapy Combined With Systemic Therapies.
Recently, a hepatic arterial infusion chemotherapy (HAIC)-associated combination therapeutic regimen, comprising HAIC and systemic therapies (molecular targeted therapy plus immunotherapy), referred to as HAIC combination therapy, has demonstrated promising anticancer effects. Identifying individuals who may potentially benefit from HAIC combination therapy could contribute to improved treatment decision-making for patients with advanced hepatocellular carcinoma (HCC). This dual-center study was a retrospective analysis of prospectively collected data with advanced HCC patients who underwent HAIC combination therapy and pretreatment contrast-enhanced ultrasound (CEUS) evaluations from March 2019 to March 2023. Two deep learning models, AE-3DNet and 3DNet, along with a time-intensity curve-based model, were developed for predicting therapeutic responses from pretreatment CEUS cine images. Diagnostic metrics, including the area under the receiver-operating-characteristic curve (AUC), were calculated to compare the performance of the models. Survival analysis was used to assess the relationship between predicted responses and prognostic outcomes. The model of AE-3DNet was constructed on the top of 3DNet, with innovative incorporation of spatiotemporal attention modules to enhance the capacity for dynamic feature extraction. 326 patients were included, 243 of whom formed the internal validation cohort, which was utilized for model development and fivefold cross-validation, while the rest formed the external validation cohort. Objective response (OR) or non-objective response (non-OR) were observed in 63% (206/326) and 37% (120/326) of the participants, respectively. Among the three efficacy prediction models assessed, AE-3DNet performed superiorly with AUC values of 0.84 and 0.85 in the internal and external validation cohorts, respectively. AE-3DNet's predicted response survival curves closely resembled actual clinical outcomes. The deep learning model of AE-3DNet developed based on pretreatment CEUS cine performed satisfactorily in predicting the responses of advanced HCC to HAIC combination therapy, which may serve as a promising tool for guiding combined therapy and individualized treatment strategies. Trial Registration: NCT02973685.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.