James M Fulcher, Ashley N Ives, Shinya Tasaki, Shane S Kelly, Sarah M Williams, Thomas L Fillmore, Mowei Zhou, Ronald J Moore, Wei-Jun Qian, Ljiljana Paša-Tolić, Lei Yu, Shahram Oveisgharan, David A Bennett, Philip L De Jager, Vladislav A Petyuk
{"title":"通过定量自顶向下的蛋白质组学发现与阿尔茨海默病相关的蛋白质形式。","authors":"James M Fulcher, Ashley N Ives, Shinya Tasaki, Shane S Kelly, Sarah M Williams, Thomas L Fillmore, Mowei Zhou, Ronald J Moore, Wei-Jun Qian, Ljiljana Paša-Tolić, Lei Yu, Shahram Oveisgharan, David A Bennett, Philip L De Jager, Vladislav A Petyuk","doi":"10.1016/j.mcpro.2025.100983","DOIUrl":null,"url":null,"abstract":"<p><p>The complex nature of Alzheimer's disease (AD) and its heterogenous clinical presentation has prompted numerous large-scale -omic analyses aimed at providing a global understanding of the pathophysiological processes involved. AD involves isoforms, proteolytic products, and post-translationally modified proteins such as amyloid beta (Aβ) and microtuble-associated protein tau. Top-down proteomics (TDP) directly measures these species, and thus, offers a comprehensive view of pathologically relevant proteoforms that are difficult to analyze using traditional proteomic techniques. Here, we broadly explored associations between proteoforms and clinicopathological traits of AD by deploying a quantitative TDP approach across frontal cortex of 103 subjects selected from the ROS and MAP cohorts. The approach identified 1,213 proteins and 11,782 proteoforms, of which 154 proteoforms had at least one significant association with a clinicopathological phenotype. One important finding included identifying Aβ C-terminal truncation state as the key property for differential association between amyloid plaques and cerebral amyloid angiopathy (CAA). Furthermore, various N-terminally truncated forms of Aβ had noticeably stronger association with amyloid plaques and global cognitive function. Additionally, we discovered six VGF neuropeptides that were positively associated with cognitive function independent of pathological burden. The database of brain cortex proteoforms provides a valuable context for functional characterization of the proteins involved in Alzheimer's disease and other late-onset brain pathologies.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100983"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of Proteoforms Associated with Alzheimer's Disease Through Quantitative Top-Down Proteomics.\",\"authors\":\"James M Fulcher, Ashley N Ives, Shinya Tasaki, Shane S Kelly, Sarah M Williams, Thomas L Fillmore, Mowei Zhou, Ronald J Moore, Wei-Jun Qian, Ljiljana Paša-Tolić, Lei Yu, Shahram Oveisgharan, David A Bennett, Philip L De Jager, Vladislav A Petyuk\",\"doi\":\"10.1016/j.mcpro.2025.100983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The complex nature of Alzheimer's disease (AD) and its heterogenous clinical presentation has prompted numerous large-scale -omic analyses aimed at providing a global understanding of the pathophysiological processes involved. AD involves isoforms, proteolytic products, and post-translationally modified proteins such as amyloid beta (Aβ) and microtuble-associated protein tau. Top-down proteomics (TDP) directly measures these species, and thus, offers a comprehensive view of pathologically relevant proteoforms that are difficult to analyze using traditional proteomic techniques. Here, we broadly explored associations between proteoforms and clinicopathological traits of AD by deploying a quantitative TDP approach across frontal cortex of 103 subjects selected from the ROS and MAP cohorts. The approach identified 1,213 proteins and 11,782 proteoforms, of which 154 proteoforms had at least one significant association with a clinicopathological phenotype. One important finding included identifying Aβ C-terminal truncation state as the key property for differential association between amyloid plaques and cerebral amyloid angiopathy (CAA). Furthermore, various N-terminally truncated forms of Aβ had noticeably stronger association with amyloid plaques and global cognitive function. Additionally, we discovered six VGF neuropeptides that were positively associated with cognitive function independent of pathological burden. The database of brain cortex proteoforms provides a valuable context for functional characterization of the proteins involved in Alzheimer's disease and other late-onset brain pathologies.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100983\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2025.100983\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100983","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Discovery of Proteoforms Associated with Alzheimer's Disease Through Quantitative Top-Down Proteomics.
The complex nature of Alzheimer's disease (AD) and its heterogenous clinical presentation has prompted numerous large-scale -omic analyses aimed at providing a global understanding of the pathophysiological processes involved. AD involves isoforms, proteolytic products, and post-translationally modified proteins such as amyloid beta (Aβ) and microtuble-associated protein tau. Top-down proteomics (TDP) directly measures these species, and thus, offers a comprehensive view of pathologically relevant proteoforms that are difficult to analyze using traditional proteomic techniques. Here, we broadly explored associations between proteoforms and clinicopathological traits of AD by deploying a quantitative TDP approach across frontal cortex of 103 subjects selected from the ROS and MAP cohorts. The approach identified 1,213 proteins and 11,782 proteoforms, of which 154 proteoforms had at least one significant association with a clinicopathological phenotype. One important finding included identifying Aβ C-terminal truncation state as the key property for differential association between amyloid plaques and cerebral amyloid angiopathy (CAA). Furthermore, various N-terminally truncated forms of Aβ had noticeably stronger association with amyloid plaques and global cognitive function. Additionally, we discovered six VGF neuropeptides that were positively associated with cognitive function independent of pathological burden. The database of brain cortex proteoforms provides a valuable context for functional characterization of the proteins involved in Alzheimer's disease and other late-onset brain pathologies.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes