Jeffery L Painter, Darmendra Ramcharran, Andrew Bate
{"title":"展望回顾:在未来的分布式数据网络分析中,生成式人工智能是否会使通用数据模型过时?","authors":"Jeffery L Painter, Darmendra Ramcharran, Andrew Bate","doi":"10.1177/20420986251332743","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating real-world healthcare data is challenging due to diverse formats and terminologies, making standardization resource-intensive. While Common Data Models (CDMs) facilitate interoperability, they often cause information loss, exhibit semantic inconsistencies, and are labor-intensive to implement and update. We explore how generative artificial intelligence (GenAI), especially large language models (LLMs), could make CDMs obsolete in quantitative healthcare data analysis by interpreting natural language queries and generating code, enabling direct interaction with raw data. Knowledge graphs (KGs) standardize relationships and semantics across heterogeneous data, preserving integrity. This perspective review proposes a fourth generation of distributed data network analysis, building on previous generations categorized by their approach to data standardization and utilization. It emphasizes the potential of GenAI to overcome the limitations CDMs with GenAI-enabled access, KGs, and automatic code generation. A data commons may further enhance this capability, and KGs may well be needed to enable effective GenAI. Addressing privacy, security, and governance is critical; any new method must ensure protections comparable to CDM-based models. Our approach would aim to enable efficient, real-time analyses across diverse datasets and enhance patient safety. We recommend prioritizing research to assess how GenAI can transform quantitative healthcare data analysis by overcoming current limitations.</p>","PeriodicalId":23012,"journal":{"name":"Therapeutic Advances in Drug Safety","volume":"16 ","pages":"20420986251332743"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033412/pdf/","citationCount":"0","resultStr":"{\"title\":\"Perspective review: Will generative AI make common data models obsolete in future analyses of distributed data networks?\",\"authors\":\"Jeffery L Painter, Darmendra Ramcharran, Andrew Bate\",\"doi\":\"10.1177/20420986251332743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrating real-world healthcare data is challenging due to diverse formats and terminologies, making standardization resource-intensive. While Common Data Models (CDMs) facilitate interoperability, they often cause information loss, exhibit semantic inconsistencies, and are labor-intensive to implement and update. We explore how generative artificial intelligence (GenAI), especially large language models (LLMs), could make CDMs obsolete in quantitative healthcare data analysis by interpreting natural language queries and generating code, enabling direct interaction with raw data. Knowledge graphs (KGs) standardize relationships and semantics across heterogeneous data, preserving integrity. This perspective review proposes a fourth generation of distributed data network analysis, building on previous generations categorized by their approach to data standardization and utilization. It emphasizes the potential of GenAI to overcome the limitations CDMs with GenAI-enabled access, KGs, and automatic code generation. A data commons may further enhance this capability, and KGs may well be needed to enable effective GenAI. Addressing privacy, security, and governance is critical; any new method must ensure protections comparable to CDM-based models. Our approach would aim to enable efficient, real-time analyses across diverse datasets and enhance patient safety. We recommend prioritizing research to assess how GenAI can transform quantitative healthcare data analysis by overcoming current limitations.</p>\",\"PeriodicalId\":23012,\"journal\":{\"name\":\"Therapeutic Advances in Drug Safety\",\"volume\":\"16 \",\"pages\":\"20420986251332743\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033412/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Therapeutic Advances in Drug Safety\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/20420986251332743\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Advances in Drug Safety","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20420986251332743","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Perspective review: Will generative AI make common data models obsolete in future analyses of distributed data networks?
Integrating real-world healthcare data is challenging due to diverse formats and terminologies, making standardization resource-intensive. While Common Data Models (CDMs) facilitate interoperability, they often cause information loss, exhibit semantic inconsistencies, and are labor-intensive to implement and update. We explore how generative artificial intelligence (GenAI), especially large language models (LLMs), could make CDMs obsolete in quantitative healthcare data analysis by interpreting natural language queries and generating code, enabling direct interaction with raw data. Knowledge graphs (KGs) standardize relationships and semantics across heterogeneous data, preserving integrity. This perspective review proposes a fourth generation of distributed data network analysis, building on previous generations categorized by their approach to data standardization and utilization. It emphasizes the potential of GenAI to overcome the limitations CDMs with GenAI-enabled access, KGs, and automatic code generation. A data commons may further enhance this capability, and KGs may well be needed to enable effective GenAI. Addressing privacy, security, and governance is critical; any new method must ensure protections comparable to CDM-based models. Our approach would aim to enable efficient, real-time analyses across diverse datasets and enhance patient safety. We recommend prioritizing research to assess how GenAI can transform quantitative healthcare data analysis by overcoming current limitations.
期刊介绍:
Therapeutic Advances in Drug Safety delivers the highest quality peer-reviewed articles, reviews, and scholarly comment on pioneering efforts and innovative studies pertaining to the safe use of drugs in patients.
The journal has a strong clinical and pharmacological focus and is aimed at clinicians and researchers in drug safety, providing a forum in print and online for publishing the highest quality articles in this area. The editors welcome articles of current interest on research across all areas of drug safety, including therapeutic drug monitoring, pharmacoepidemiology, adverse drug reactions, drug interactions, pharmacokinetics, pharmacovigilance, medication/prescribing errors, risk management, ethics and regulation.