Christine Y Yeh, Dennis P Wall, Karen Matthys, Chiara Sabatti, Julia Palacios
{"title":"不断发展的领域中的课程设计:斯坦福大学生物医学数据科学的视角。","authors":"Christine Y Yeh, Dennis P Wall, Karen Matthys, Chiara Sabatti, Julia Palacios","doi":"10.1146/annurev-biodatasci-090624-022951","DOIUrl":null,"url":null,"abstract":"<p><p>In recent decades, there has been an explosion of data streams spanning the entire spectrum of biomedicine, opening novel opportunities to tackle biological and medical research questions, increasing our ability to provide effective and efficient health care. In parallel, augmented computational power has allowed the development and deployment of quantitative approaches at unprecedented scales. To effectively take advantage of this progress, it is important to invest in the training of a new generation of biomedical data scientists. Designing a graduate curriculum in the backdrop of a rapidly changing landscape of data, methods, and computing power demands flexibility and openness to adaptation. At the same time, we strive to ensure that the students acquire foundational competencies that might fuel productive and evolving careers, without being constrained to and defined by a niche trendy topic. We offer here a view of graduate training in biomedical data science from the standpoint of our experience at Stanford University. We conclude with a series of open challenges, the answers to which we believe will shape training in biomedical data science.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curriculum Design in an Evolving Field: Perspectives on Biomedical Data Science from Stanford.\",\"authors\":\"Christine Y Yeh, Dennis P Wall, Karen Matthys, Chiara Sabatti, Julia Palacios\",\"doi\":\"10.1146/annurev-biodatasci-090624-022951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent decades, there has been an explosion of data streams spanning the entire spectrum of biomedicine, opening novel opportunities to tackle biological and medical research questions, increasing our ability to provide effective and efficient health care. In parallel, augmented computational power has allowed the development and deployment of quantitative approaches at unprecedented scales. To effectively take advantage of this progress, it is important to invest in the training of a new generation of biomedical data scientists. Designing a graduate curriculum in the backdrop of a rapidly changing landscape of data, methods, and computing power demands flexibility and openness to adaptation. At the same time, we strive to ensure that the students acquire foundational competencies that might fuel productive and evolving careers, without being constrained to and defined by a niche trendy topic. We offer here a view of graduate training in biomedical data science from the standpoint of our experience at Stanford University. We conclude with a series of open challenges, the answers to which we believe will shape training in biomedical data science.</p>\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-090624-022951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-090624-022951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Curriculum Design in an Evolving Field: Perspectives on Biomedical Data Science from Stanford.
In recent decades, there has been an explosion of data streams spanning the entire spectrum of biomedicine, opening novel opportunities to tackle biological and medical research questions, increasing our ability to provide effective and efficient health care. In parallel, augmented computational power has allowed the development and deployment of quantitative approaches at unprecedented scales. To effectively take advantage of this progress, it is important to invest in the training of a new generation of biomedical data scientists. Designing a graduate curriculum in the backdrop of a rapidly changing landscape of data, methods, and computing power demands flexibility and openness to adaptation. At the same time, we strive to ensure that the students acquire foundational competencies that might fuel productive and evolving careers, without being constrained to and defined by a niche trendy topic. We offer here a view of graduate training in biomedical data science from the standpoint of our experience at Stanford University. We conclude with a series of open challenges, the answers to which we believe will shape training in biomedical data science.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.