Yanhui Hu, Jonathan Rodiger, Yifang Liu, Chenxi Gao, Ying Liu, Mujeeb Qadiri, Austin Veal, Martha L Bulyk, Norbert Perrimon
{"title":"TF2TG:挖掘果蝇转录因子潜在基因靶点的在线资源。","authors":"Yanhui Hu, Jonathan Rodiger, Yifang Liu, Chenxi Gao, Ying Liu, Mujeeb Qadiri, Austin Veal, Martha L Bulyk, Norbert Perrimon","doi":"10.1093/genetics/iyaf082","DOIUrl":null,"url":null,"abstract":"<p><p>Sequence-specific transcription factors (TFs) are key regulators of many biological processes, controlling the expression of their target genes through binding to the cis- regulatory regions such as promoters and enhancers. Each TF has unique DNA binding site motifs, and large-scale experiments have been conducted to characterize TF-DNA binding preferences. However, no comprehensive resource currently integrates these datasets for Drosophila. To address this need, we developed TF2TG (\"transcription factor\" to \"target gene\"), a comprehensive resource that combines both in vitro and in vivo datasets to link transcription factors (TFs) to their target genes based on TF-DNA binding preferences along with the protein-protein interaction data, tissue-specific transcriptomic data, and chromatin accessibility data. Although the genome offers numerous potential binding sites for each TF, only a subset is actually bound in vivo, and of these, only a fraction is functionally relevant. For instance, some TFs bind to their specific sites due to synergistic interactions with other factors nearby. This integration provides users with a comprehensive list of potential candidates as well as aids users in ranking candidate genes and determining condition-specific TF binding for studying transcriptional regulation in Drosophila.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TF2TG: an online resource mining the potential gene targets of transcription factors in Drosophila.\",\"authors\":\"Yanhui Hu, Jonathan Rodiger, Yifang Liu, Chenxi Gao, Ying Liu, Mujeeb Qadiri, Austin Veal, Martha L Bulyk, Norbert Perrimon\",\"doi\":\"10.1093/genetics/iyaf082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sequence-specific transcription factors (TFs) are key regulators of many biological processes, controlling the expression of their target genes through binding to the cis- regulatory regions such as promoters and enhancers. Each TF has unique DNA binding site motifs, and large-scale experiments have been conducted to characterize TF-DNA binding preferences. However, no comprehensive resource currently integrates these datasets for Drosophila. To address this need, we developed TF2TG (\\\"transcription factor\\\" to \\\"target gene\\\"), a comprehensive resource that combines both in vitro and in vivo datasets to link transcription factors (TFs) to their target genes based on TF-DNA binding preferences along with the protein-protein interaction data, tissue-specific transcriptomic data, and chromatin accessibility data. Although the genome offers numerous potential binding sites for each TF, only a subset is actually bound in vivo, and of these, only a fraction is functionally relevant. For instance, some TFs bind to their specific sites due to synergistic interactions with other factors nearby. This integration provides users with a comprehensive list of potential candidates as well as aids users in ranking candidate genes and determining condition-specific TF binding for studying transcriptional regulation in Drosophila.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyaf082\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf082","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
TF2TG: an online resource mining the potential gene targets of transcription factors in Drosophila.
Sequence-specific transcription factors (TFs) are key regulators of many biological processes, controlling the expression of their target genes through binding to the cis- regulatory regions such as promoters and enhancers. Each TF has unique DNA binding site motifs, and large-scale experiments have been conducted to characterize TF-DNA binding preferences. However, no comprehensive resource currently integrates these datasets for Drosophila. To address this need, we developed TF2TG ("transcription factor" to "target gene"), a comprehensive resource that combines both in vitro and in vivo datasets to link transcription factors (TFs) to their target genes based on TF-DNA binding preferences along with the protein-protein interaction data, tissue-specific transcriptomic data, and chromatin accessibility data. Although the genome offers numerous potential binding sites for each TF, only a subset is actually bound in vivo, and of these, only a fraction is functionally relevant. For instance, some TFs bind to their specific sites due to synergistic interactions with other factors nearby. This integration provides users with a comprehensive list of potential candidates as well as aids users in ranking candidate genes and determining condition-specific TF binding for studying transcriptional regulation in Drosophila.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.