细菌泛基因组分析方法的陷阱:结核分枝杆菌和两个较少克隆的细菌物种的案例研究。

Maximillian G Marin, Natalia Quinones-Olvera, Christoph Wippel, Mahboobeh Behruznia, Brendan M Jeffrey, Michael Harris, Brendon C Mann, Alex Rosenthal, Karen R Jacobson, Robin M Warren, Heng Li, Conor J Meehan, Maha R Farhat
{"title":"细菌泛基因组分析方法的陷阱:结核分枝杆菌和两个较少克隆的细菌物种的案例研究。","authors":"Maximillian G Marin, Natalia Quinones-Olvera, Christoph Wippel, Mahboobeh Behruznia, Brendan M Jeffrey, Michael Harris, Brendon C Mann, Alex Rosenthal, Karen R Jacobson, Robin M Warren, Heng Li, Conor J Meehan, Maha R Farhat","doi":"10.1093/bioinformatics/btaf219","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Pan-genome analysis is a fundamental tool for studying bacterial genome evolution; however, the variety in methods used to define and measure the pan-genome poses challenges to the interpretation and reliability of results. Using Mycobacterium tuberculosis, a clonally evolving bacterium with a small accessory genome, as a model system, we systematically evaluated sources of variability in pan-genome estimates. Our analysis revealed that differences in assembly type (short-read versus hybrid), annotation pipeline, and pan-genome software, significantly impact predictions of core and accessory genome size. Extending our analysis to two additional bacterial species, Escherichia coli and Staphylococcus aureus, we observed consistent tool-dependent biases but species-specific patterns in pan-genome variability. Our findings highlight the importance of integrating nucleotide- and protein-level analyses to improve the reliability and reproducibility of pan-genome studies across diverse bacterial populations.</p><p><strong>Availability and implementation: </strong>Panqc is freely available under an MIT license at https://github.com/maxgmarin/panqc.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119186/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pitfalls of bacterial pan-genome analysis approaches: a case study of Mycobacterium tuberculosis and two less clonal bacterial species.\",\"authors\":\"Maximillian G Marin, Natalia Quinones-Olvera, Christoph Wippel, Mahboobeh Behruznia, Brendan M Jeffrey, Michael Harris, Brendon C Mann, Alex Rosenthal, Karen R Jacobson, Robin M Warren, Heng Li, Conor J Meehan, Maha R Farhat\",\"doi\":\"10.1093/bioinformatics/btaf219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>Pan-genome analysis is a fundamental tool for studying bacterial genome evolution; however, the variety in methods used to define and measure the pan-genome poses challenges to the interpretation and reliability of results. Using Mycobacterium tuberculosis, a clonally evolving bacterium with a small accessory genome, as a model system, we systematically evaluated sources of variability in pan-genome estimates. Our analysis revealed that differences in assembly type (short-read versus hybrid), annotation pipeline, and pan-genome software, significantly impact predictions of core and accessory genome size. Extending our analysis to two additional bacterial species, Escherichia coli and Staphylococcus aureus, we observed consistent tool-dependent biases but species-specific patterns in pan-genome variability. Our findings highlight the importance of integrating nucleotide- and protein-level analyses to improve the reliability and reproducibility of pan-genome studies across diverse bacterial populations.</p><p><strong>Availability and implementation: </strong>Panqc is freely available under an MIT license at https://github.com/maxgmarin/panqc.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119186/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

泛基因组分析是研究细菌基因组进化的基本工具;然而,用于定义和测量泛基因组的各种方法对结果的解释和可靠性提出了挑战。以结核分枝杆菌(Mtb)为模型系统,研究人员系统地评估了泛基因组估计中变异的来源。结核分枝杆菌以克隆进化、缺乏水平基因转移和小附属基因组为特征。我们的分析表明,组装类型(短读与杂交)、注释管道和泛基因组软件的差异显著影响核心和辅助基因组大小的预测。将我们的分析扩展到另外两种细菌,大肠杆菌和金黄色葡萄球菌,我们观察到一致的工具依赖偏差,但在泛基因组变异性中存在物种特异性模式。我们的研究结果强调需要强有力的质量控制和仔细的方法选择,以准确地捕捉基因组多样性和进化。这项工作强调了整合核苷酸和蛋白质水平分析的重要性,以提高跨不同细菌群体的泛基因组研究的可靠性和可重复性。可用性:Panqc在麻省理工学院许可下免费提供:https://github.com/maxgmarin/panqc.Contact: maha_farhat@hms.harvard.edu.Supplementary信息:补充数据可在Bioinformatics在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pitfalls of bacterial pan-genome analysis approaches: a case study of Mycobacterium tuberculosis and two less clonal bacterial species.

Summary: Pan-genome analysis is a fundamental tool for studying bacterial genome evolution; however, the variety in methods used to define and measure the pan-genome poses challenges to the interpretation and reliability of results. Using Mycobacterium tuberculosis, a clonally evolving bacterium with a small accessory genome, as a model system, we systematically evaluated sources of variability in pan-genome estimates. Our analysis revealed that differences in assembly type (short-read versus hybrid), annotation pipeline, and pan-genome software, significantly impact predictions of core and accessory genome size. Extending our analysis to two additional bacterial species, Escherichia coli and Staphylococcus aureus, we observed consistent tool-dependent biases but species-specific patterns in pan-genome variability. Our findings highlight the importance of integrating nucleotide- and protein-level analyses to improve the reliability and reproducibility of pan-genome studies across diverse bacterial populations.

Availability and implementation: Panqc is freely available under an MIT license at https://github.com/maxgmarin/panqc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信