{"title":"具有尖峰频率自适应的连续吸引子神经网络动力学。","authors":"Yujun Li;Tianhao Chu;Si Wu","doi":"10.1162/neco_a_01757","DOIUrl":null,"url":null,"abstract":"Attractor neural networks consider that neural information is stored as stationary states of a dynamical system formed by a large number of interconnected neurons. The attractor property empowers a neural system to encode information robustly, but it also incurs the difficulty of rapid update of network states, which can impair information update and search in the brain. To overcome this difficulty, a solution is to include adaptation in the attractor network dynamics, whereby the adaptation serves as a slow negative feedback mechanism to destabilize what are otherwise permanently stable states. In such a way, the neural system can, on one hand, represent information reliably using attractor states, and on the other hand, perform computations wherever rapid state updating is involved. Previous studies have shown that continuous attractor neural networks with adaptation (A-CANNs) exhibit rich dynamical behaviors accounting for various brain functions. In this review, we present a comprehensive view of the rich diverse dynamics of A-CANNs. Moreover, we provide a unified mathematical framework to understand these different dynamical behaviors and briefly discuss their biological implications.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"37 6","pages":"1057-1101"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Continuous Attractor Neural Networks With Spike Frequency Adaptation\",\"authors\":\"Yujun Li;Tianhao Chu;Si Wu\",\"doi\":\"10.1162/neco_a_01757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attractor neural networks consider that neural information is stored as stationary states of a dynamical system formed by a large number of interconnected neurons. The attractor property empowers a neural system to encode information robustly, but it also incurs the difficulty of rapid update of network states, which can impair information update and search in the brain. To overcome this difficulty, a solution is to include adaptation in the attractor network dynamics, whereby the adaptation serves as a slow negative feedback mechanism to destabilize what are otherwise permanently stable states. In such a way, the neural system can, on one hand, represent information reliably using attractor states, and on the other hand, perform computations wherever rapid state updating is involved. Previous studies have shown that continuous attractor neural networks with adaptation (A-CANNs) exhibit rich dynamical behaviors accounting for various brain functions. In this review, we present a comprehensive view of the rich diverse dynamics of A-CANNs. Moreover, we provide a unified mathematical framework to understand these different dynamical behaviors and briefly discuss their biological implications.\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\"37 6\",\"pages\":\"1057-1101\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11009212/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11009212/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dynamics of Continuous Attractor Neural Networks With Spike Frequency Adaptation
Attractor neural networks consider that neural information is stored as stationary states of a dynamical system formed by a large number of interconnected neurons. The attractor property empowers a neural system to encode information robustly, but it also incurs the difficulty of rapid update of network states, which can impair information update and search in the brain. To overcome this difficulty, a solution is to include adaptation in the attractor network dynamics, whereby the adaptation serves as a slow negative feedback mechanism to destabilize what are otherwise permanently stable states. In such a way, the neural system can, on one hand, represent information reliably using attractor states, and on the other hand, perform computations wherever rapid state updating is involved. Previous studies have shown that continuous attractor neural networks with adaptation (A-CANNs) exhibit rich dynamical behaviors accounting for various brain functions. In this review, we present a comprehensive view of the rich diverse dynamics of A-CANNs. Moreover, we provide a unified mathematical framework to understand these different dynamical behaviors and briefly discuss their biological implications.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.