Sophia L Ellis, Mark E Baird, Luke P Harrison, Kai G Schulz, Daniel P Harrison
{"title":"光照和温度胁迫下珊瑚白化的光生理模型:实验评估。","authors":"Sophia L Ellis, Mark E Baird, Luke P Harrison, Kai G Schulz, Daniel P Harrison","doi":"10.1093/conphys/coaf020","DOIUrl":null,"url":null,"abstract":"<p><p>Marine heatwaves occurring against the backdrop of rising global sea surface temperatures have triggered mass coral bleaching and mortality. Irradiance is critical to coral growth but is also an implicating factor in photodamage, leading to the expulsion of symbiotic algae under increased temperatures. Numerical modelling is a valuable tool that can provide insight into the state of the symbiont photochemistry during coral bleaching events. However, very few numerical physiological models combine the influence of light and temperature for simulating coral bleaching. The coral bleaching model used was derived from the coral bleaching representation in the eReefs configuration of the CSIRO Environmental Modelling Suite, with the most significant change being the equation for the rate of detoxification of reactive oxygen species. Simulated physiological bleaching outcomes from the model were compared to photochemical bleaching proxies measured during an <i>ex situ</i> moderate degree-heating week (up to 4.4) experiment. The bleaching response of <i>Acropora divaricata</i> was assessed in an unshaded and 30% shade treatment. The model-simulated timing for the onset of bleaching under elevated temperatures closely corresponded with an initial photochemical decline as observed in the experiment. Increased bleaching severity under elevated temperature and unshaded light was also simulated by the model, an outcome confirmed in the experiment. This is the first experimental validation of a temperature-mediated, light-driven model of coral bleaching from the perspective of the symbiont. When forced by realistic environmental conditions, process-based mechanistic modelling could improve accuracy in predicting heterogeneous bleaching outcomes during contemporary marine heatwave events and future climate change scenarios. Mechanistic modelling will be invaluable in evaluating management interventions for deployment in coral reef environments.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"13 1","pages":"coaf020"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997550/pdf/","citationCount":"0","resultStr":"{\"title\":\"A photophysiological model of coral bleaching under light and temperature stress: experimental assessment.\",\"authors\":\"Sophia L Ellis, Mark E Baird, Luke P Harrison, Kai G Schulz, Daniel P Harrison\",\"doi\":\"10.1093/conphys/coaf020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Marine heatwaves occurring against the backdrop of rising global sea surface temperatures have triggered mass coral bleaching and mortality. Irradiance is critical to coral growth but is also an implicating factor in photodamage, leading to the expulsion of symbiotic algae under increased temperatures. Numerical modelling is a valuable tool that can provide insight into the state of the symbiont photochemistry during coral bleaching events. However, very few numerical physiological models combine the influence of light and temperature for simulating coral bleaching. The coral bleaching model used was derived from the coral bleaching representation in the eReefs configuration of the CSIRO Environmental Modelling Suite, with the most significant change being the equation for the rate of detoxification of reactive oxygen species. Simulated physiological bleaching outcomes from the model were compared to photochemical bleaching proxies measured during an <i>ex situ</i> moderate degree-heating week (up to 4.4) experiment. The bleaching response of <i>Acropora divaricata</i> was assessed in an unshaded and 30% shade treatment. The model-simulated timing for the onset of bleaching under elevated temperatures closely corresponded with an initial photochemical decline as observed in the experiment. Increased bleaching severity under elevated temperature and unshaded light was also simulated by the model, an outcome confirmed in the experiment. This is the first experimental validation of a temperature-mediated, light-driven model of coral bleaching from the perspective of the symbiont. When forced by realistic environmental conditions, process-based mechanistic modelling could improve accuracy in predicting heterogeneous bleaching outcomes during contemporary marine heatwave events and future climate change scenarios. Mechanistic modelling will be invaluable in evaluating management interventions for deployment in coral reef environments.</p>\",\"PeriodicalId\":54331,\"journal\":{\"name\":\"Conservation Physiology\",\"volume\":\"13 1\",\"pages\":\"coaf020\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997550/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conservation Physiology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/conphys/coaf020\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coaf020","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
A photophysiological model of coral bleaching under light and temperature stress: experimental assessment.
Marine heatwaves occurring against the backdrop of rising global sea surface temperatures have triggered mass coral bleaching and mortality. Irradiance is critical to coral growth but is also an implicating factor in photodamage, leading to the expulsion of symbiotic algae under increased temperatures. Numerical modelling is a valuable tool that can provide insight into the state of the symbiont photochemistry during coral bleaching events. However, very few numerical physiological models combine the influence of light and temperature for simulating coral bleaching. The coral bleaching model used was derived from the coral bleaching representation in the eReefs configuration of the CSIRO Environmental Modelling Suite, with the most significant change being the equation for the rate of detoxification of reactive oxygen species. Simulated physiological bleaching outcomes from the model were compared to photochemical bleaching proxies measured during an ex situ moderate degree-heating week (up to 4.4) experiment. The bleaching response of Acropora divaricata was assessed in an unshaded and 30% shade treatment. The model-simulated timing for the onset of bleaching under elevated temperatures closely corresponded with an initial photochemical decline as observed in the experiment. Increased bleaching severity under elevated temperature and unshaded light was also simulated by the model, an outcome confirmed in the experiment. This is the first experimental validation of a temperature-mediated, light-driven model of coral bleaching from the perspective of the symbiont. When forced by realistic environmental conditions, process-based mechanistic modelling could improve accuracy in predicting heterogeneous bleaching outcomes during contemporary marine heatwave events and future climate change scenarios. Mechanistic modelling will be invaluable in evaluating management interventions for deployment in coral reef environments.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.