{"title":"与淀粉样变、溶酶体失稳和出血有关的病理性轴突增大是阿尔茨海默病的主要缺陷。","authors":"Hualin Fu, Jilong Li, Chunlei Zhang, Guo Gao, Qiqi Ge, Xinping Guan, Daxiang Cui","doi":"10.4103/NRR.NRR-D-24-01440","DOIUrl":null,"url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202602000-00047/figure1/v/2025-05-05T160104Z/r/image-tiff Alzheimer's disease is a multi-amyloidosis disease characterized by amyloid-β deposits in brain blood vessels, microaneurysms, and senile plaques. How amyloid-β deposition affects axon pathology has not been examined extensively. We used immunohistochemistry and immunofluorescence staining to analyze the forebrain tissue slices of Alzheimer's disease patients. Widespread axonal amyloidosis with distinctive axonal enlargement was observed in patients with Alzheimer's disease. On average, amyloid-β-positive axon diameters in Alzheimer's disease brains were 1.72 times those of control brain axons. Furthermore, axonal amyloidosis was associated with microtubule-associated protein 2 reduction, tau phosphorylation, lysosome destabilization, and several blood-related markers, such as apolipoprotein E, alpha-hemoglobin, glycosylated hemoglobin type A1C, and hemin. Lysosome destabilization in Alzheimer's disease was also clearly identified in the neuronal soma, where it was associated with the co-expression of amyloid-β, Cathepsin D, alpha-hemoglobin, actin alpha 2, and collagen type IV. This suggests that exogenous hemorrhagic protein intake influences neural lysosome stability. Additionally, the data showed that amyloid-β-containing lysosomes were 2.23 times larger than control lysosomes. Furthermore, under rare conditions, axonal breakages were observed, which likely resulted in Wallerian degeneration. In summary, axonal enlargement associated with amyloidosis, micro-bleeding, and lysosome destabilization is a major defect in patients with Alzheimer's disease. This finding suggests that, in addition to the well-documented neural soma and synaptic damage, axonal damage is a key component of neuronal defects in Alzheimer's disease.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"21 2","pages":"790-799"},"PeriodicalIF":5.9000,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathological axonal enlargement in connection with amyloidosis, lysosome destabilization, and bleeding is a major defect in Alzheimer's disease.\",\"authors\":\"Hualin Fu, Jilong Li, Chunlei Zhang, Guo Gao, Qiqi Ge, Xinping Guan, Daxiang Cui\",\"doi\":\"10.4103/NRR.NRR-D-24-01440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>JOURNAL/nrgr/04.03/01300535-202602000-00047/figure1/v/2025-05-05T160104Z/r/image-tiff Alzheimer's disease is a multi-amyloidosis disease characterized by amyloid-β deposits in brain blood vessels, microaneurysms, and senile plaques. How amyloid-β deposition affects axon pathology has not been examined extensively. We used immunohistochemistry and immunofluorescence staining to analyze the forebrain tissue slices of Alzheimer's disease patients. Widespread axonal amyloidosis with distinctive axonal enlargement was observed in patients with Alzheimer's disease. On average, amyloid-β-positive axon diameters in Alzheimer's disease brains were 1.72 times those of control brain axons. Furthermore, axonal amyloidosis was associated with microtubule-associated protein 2 reduction, tau phosphorylation, lysosome destabilization, and several blood-related markers, such as apolipoprotein E, alpha-hemoglobin, glycosylated hemoglobin type A1C, and hemin. Lysosome destabilization in Alzheimer's disease was also clearly identified in the neuronal soma, where it was associated with the co-expression of amyloid-β, Cathepsin D, alpha-hemoglobin, actin alpha 2, and collagen type IV. This suggests that exogenous hemorrhagic protein intake influences neural lysosome stability. Additionally, the data showed that amyloid-β-containing lysosomes were 2.23 times larger than control lysosomes. Furthermore, under rare conditions, axonal breakages were observed, which likely resulted in Wallerian degeneration. In summary, axonal enlargement associated with amyloidosis, micro-bleeding, and lysosome destabilization is a major defect in patients with Alzheimer's disease. This finding suggests that, in addition to the well-documented neural soma and synaptic damage, axonal damage is a key component of neuronal defects in Alzheimer's disease.</p>\",\"PeriodicalId\":19113,\"journal\":{\"name\":\"Neural Regeneration Research\",\"volume\":\"21 2\",\"pages\":\"790-799\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2026-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Regeneration Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/NRR.NRR-D-24-01440\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-01440","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Pathological axonal enlargement in connection with amyloidosis, lysosome destabilization, and bleeding is a major defect in Alzheimer's disease.
JOURNAL/nrgr/04.03/01300535-202602000-00047/figure1/v/2025-05-05T160104Z/r/image-tiff Alzheimer's disease is a multi-amyloidosis disease characterized by amyloid-β deposits in brain blood vessels, microaneurysms, and senile plaques. How amyloid-β deposition affects axon pathology has not been examined extensively. We used immunohistochemistry and immunofluorescence staining to analyze the forebrain tissue slices of Alzheimer's disease patients. Widespread axonal amyloidosis with distinctive axonal enlargement was observed in patients with Alzheimer's disease. On average, amyloid-β-positive axon diameters in Alzheimer's disease brains were 1.72 times those of control brain axons. Furthermore, axonal amyloidosis was associated with microtubule-associated protein 2 reduction, tau phosphorylation, lysosome destabilization, and several blood-related markers, such as apolipoprotein E, alpha-hemoglobin, glycosylated hemoglobin type A1C, and hemin. Lysosome destabilization in Alzheimer's disease was also clearly identified in the neuronal soma, where it was associated with the co-expression of amyloid-β, Cathepsin D, alpha-hemoglobin, actin alpha 2, and collagen type IV. This suggests that exogenous hemorrhagic protein intake influences neural lysosome stability. Additionally, the data showed that amyloid-β-containing lysosomes were 2.23 times larger than control lysosomes. Furthermore, under rare conditions, axonal breakages were observed, which likely resulted in Wallerian degeneration. In summary, axonal enlargement associated with amyloidosis, micro-bleeding, and lysosome destabilization is a major defect in patients with Alzheimer's disease. This finding suggests that, in addition to the well-documented neural soma and synaptic damage, axonal damage is a key component of neuronal defects in Alzheimer's disease.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.