Leena Kariapper, Ila A Marathe, Ashley Brower Niesman, Kelly Suino-Powell, Yuh Min Chook, Vicki H Wysocki, Evan J Worden
{"title":"Setdb1和Atf7IP形成异三聚体复合物,阻断Setdb1核输出。","authors":"Leena Kariapper, Ila A Marathe, Ashley Brower Niesman, Kelly Suino-Powell, Yuh Min Chook, Vicki H Wysocki, Evan J Worden","doi":"10.1016/j.jbc.2025.110171","DOIUrl":null,"url":null,"abstract":"<p><p>Histone H3K9 methylation (H3K9me) by Setdb1 silences retrotransposons (rTE) by sequestering them in heterochromatin. Atf7IP is a constitutive binding partner of Setdb1 and is responsible for Setdb1 nuclear localization, activation and chromatin recruitment. However, structural details of the Setdb1/Atf7IP interaction have not been elucidated. We used Alphafold2 predictions and biochemical reconstitutions to show that one copy of Setdb1 and two copies of Atf7IP form a hetero-trimeric complex in vitro and in cells. We also find that Atf7IP self-associates, forming multimeric complexes that are resolved upon Setdb1 binding. Setdb1 binds to Atf7IP through coiled coil interactions that include both Setdb1 nuclear export signals (NES). Atf7IP directly competes with CRM1 to bind the Setdb1 NES motifs, explaining how Atf7IP prevents CRM1-mediated nuclear export of Setdb1. Setdb1 also forms hetero-trimeric complexes with the Atf7IP paralog Atf7IP2 and we show that Setdb1 can form mixed heterotrimers comprising one copy of each Setdb1, Atf7IP and Atf7IP2. Atf7IP and Atf7IP2 are co-expressed in many tissues suggesting that heterotrimers with different compositions of Atf7IP and Atf7IP2 may differentially regulate H3K9me by fine-tuning Setdb1 localization and activity.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"110171"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Setdb1 and Atf7IP form a hetero-trimeric complex that blocks Setdb1 nuclear export.\",\"authors\":\"Leena Kariapper, Ila A Marathe, Ashley Brower Niesman, Kelly Suino-Powell, Yuh Min Chook, Vicki H Wysocki, Evan J Worden\",\"doi\":\"10.1016/j.jbc.2025.110171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histone H3K9 methylation (H3K9me) by Setdb1 silences retrotransposons (rTE) by sequestering them in heterochromatin. Atf7IP is a constitutive binding partner of Setdb1 and is responsible for Setdb1 nuclear localization, activation and chromatin recruitment. However, structural details of the Setdb1/Atf7IP interaction have not been elucidated. We used Alphafold2 predictions and biochemical reconstitutions to show that one copy of Setdb1 and two copies of Atf7IP form a hetero-trimeric complex in vitro and in cells. We also find that Atf7IP self-associates, forming multimeric complexes that are resolved upon Setdb1 binding. Setdb1 binds to Atf7IP through coiled coil interactions that include both Setdb1 nuclear export signals (NES). Atf7IP directly competes with CRM1 to bind the Setdb1 NES motifs, explaining how Atf7IP prevents CRM1-mediated nuclear export of Setdb1. Setdb1 also forms hetero-trimeric complexes with the Atf7IP paralog Atf7IP2 and we show that Setdb1 can form mixed heterotrimers comprising one copy of each Setdb1, Atf7IP and Atf7IP2. Atf7IP and Atf7IP2 are co-expressed in many tissues suggesting that heterotrimers with different compositions of Atf7IP and Atf7IP2 may differentially regulate H3K9me by fine-tuning Setdb1 localization and activity.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"110171\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110171\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110171","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Setdb1 and Atf7IP form a hetero-trimeric complex that blocks Setdb1 nuclear export.
Histone H3K9 methylation (H3K9me) by Setdb1 silences retrotransposons (rTE) by sequestering them in heterochromatin. Atf7IP is a constitutive binding partner of Setdb1 and is responsible for Setdb1 nuclear localization, activation and chromatin recruitment. However, structural details of the Setdb1/Atf7IP interaction have not been elucidated. We used Alphafold2 predictions and biochemical reconstitutions to show that one copy of Setdb1 and two copies of Atf7IP form a hetero-trimeric complex in vitro and in cells. We also find that Atf7IP self-associates, forming multimeric complexes that are resolved upon Setdb1 binding. Setdb1 binds to Atf7IP through coiled coil interactions that include both Setdb1 nuclear export signals (NES). Atf7IP directly competes with CRM1 to bind the Setdb1 NES motifs, explaining how Atf7IP prevents CRM1-mediated nuclear export of Setdb1. Setdb1 also forms hetero-trimeric complexes with the Atf7IP paralog Atf7IP2 and we show that Setdb1 can form mixed heterotrimers comprising one copy of each Setdb1, Atf7IP and Atf7IP2. Atf7IP and Atf7IP2 are co-expressed in many tissues suggesting that heterotrimers with different compositions of Atf7IP and Atf7IP2 may differentially regulate H3K9me by fine-tuning Setdb1 localization and activity.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.