Setdb1和Atf7IP形成异三聚体复合物,阻断Setdb1核输出。

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Leena Kariapper, Ila A Marathe, Ashley Brower Niesman, Kelly Suino-Powell, Yuh Min Chook, Vicki H Wysocki, Evan J Worden
{"title":"Setdb1和Atf7IP形成异三聚体复合物,阻断Setdb1核输出。","authors":"Leena Kariapper, Ila A Marathe, Ashley Brower Niesman, Kelly Suino-Powell, Yuh Min Chook, Vicki H Wysocki, Evan J Worden","doi":"10.1016/j.jbc.2025.110171","DOIUrl":null,"url":null,"abstract":"<p><p>Histone H3K9 methylation (H3K9me) by Setdb1 silences retrotransposons (rTE) by sequestering them in heterochromatin. Atf7IP is a constitutive binding partner of Setdb1 and is responsible for Setdb1 nuclear localization, activation and chromatin recruitment. However, structural details of the Setdb1/Atf7IP interaction have not been elucidated. We used Alphafold2 predictions and biochemical reconstitutions to show that one copy of Setdb1 and two copies of Atf7IP form a hetero-trimeric complex in vitro and in cells. We also find that Atf7IP self-associates, forming multimeric complexes that are resolved upon Setdb1 binding. Setdb1 binds to Atf7IP through coiled coil interactions that include both Setdb1 nuclear export signals (NES). Atf7IP directly competes with CRM1 to bind the Setdb1 NES motifs, explaining how Atf7IP prevents CRM1-mediated nuclear export of Setdb1. Setdb1 also forms hetero-trimeric complexes with the Atf7IP paralog Atf7IP2 and we show that Setdb1 can form mixed heterotrimers comprising one copy of each Setdb1, Atf7IP and Atf7IP2. Atf7IP and Atf7IP2 are co-expressed in many tissues suggesting that heterotrimers with different compositions of Atf7IP and Atf7IP2 may differentially regulate H3K9me by fine-tuning Setdb1 localization and activity.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"110171"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Setdb1 and Atf7IP form a hetero-trimeric complex that blocks Setdb1 nuclear export.\",\"authors\":\"Leena Kariapper, Ila A Marathe, Ashley Brower Niesman, Kelly Suino-Powell, Yuh Min Chook, Vicki H Wysocki, Evan J Worden\",\"doi\":\"10.1016/j.jbc.2025.110171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histone H3K9 methylation (H3K9me) by Setdb1 silences retrotransposons (rTE) by sequestering them in heterochromatin. Atf7IP is a constitutive binding partner of Setdb1 and is responsible for Setdb1 nuclear localization, activation and chromatin recruitment. However, structural details of the Setdb1/Atf7IP interaction have not been elucidated. We used Alphafold2 predictions and biochemical reconstitutions to show that one copy of Setdb1 and two copies of Atf7IP form a hetero-trimeric complex in vitro and in cells. We also find that Atf7IP self-associates, forming multimeric complexes that are resolved upon Setdb1 binding. Setdb1 binds to Atf7IP through coiled coil interactions that include both Setdb1 nuclear export signals (NES). Atf7IP directly competes with CRM1 to bind the Setdb1 NES motifs, explaining how Atf7IP prevents CRM1-mediated nuclear export of Setdb1. Setdb1 also forms hetero-trimeric complexes with the Atf7IP paralog Atf7IP2 and we show that Setdb1 can form mixed heterotrimers comprising one copy of each Setdb1, Atf7IP and Atf7IP2. Atf7IP and Atf7IP2 are co-expressed in many tissues suggesting that heterotrimers with different compositions of Atf7IP and Atf7IP2 may differentially regulate H3K9me by fine-tuning Setdb1 localization and activity.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"110171\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110171\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110171","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Setdb1介导的组蛋白H3K9甲基化(H3K9me)通过将逆转录转座子(rTE)隔离在异染色质中而使其沉默。Atf7IP是Setdb1的组成性结合伙伴,负责Setdb1的核定位、激活和染色质募集。然而,Setdb1/Atf7IP相互作用的结构细节尚未阐明。我们使用Alphafold2预测和生化重组来证明Setdb1的一个拷贝和Atf7IP的两个拷贝在体外和细胞中形成了一个异三聚体复合物。我们还发现Atf7IP自结合,形成多聚物,在Setdb1结合时被分解。Setdb1通过包括Setdb1核输出信号(NES)的线圈相互作用与Atf7IP结合。Atf7IP直接与CRM1竞争结合Setdb1 NES基序,解释了Atf7IP如何阻止CRM1介导的Setdb1核输出。Setdb1也与Atf7IP类似的Atf7IP2形成异源三聚体,我们发现Setdb1可以形成混合异源三聚体,包括Setdb1、Atf7IP和Atf7IP2各一个拷贝。Atf7IP和Atf7IP2在许多组织中共表达,表明不同Atf7IP和Atf7IP2组成的异源三聚体可能通过微调Setdb1的定位和活性来差异调节H3K9me。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Setdb1 and Atf7IP form a hetero-trimeric complex that blocks Setdb1 nuclear export.

Histone H3K9 methylation (H3K9me) by Setdb1 silences retrotransposons (rTE) by sequestering them in heterochromatin. Atf7IP is a constitutive binding partner of Setdb1 and is responsible for Setdb1 nuclear localization, activation and chromatin recruitment. However, structural details of the Setdb1/Atf7IP interaction have not been elucidated. We used Alphafold2 predictions and biochemical reconstitutions to show that one copy of Setdb1 and two copies of Atf7IP form a hetero-trimeric complex in vitro and in cells. We also find that Atf7IP self-associates, forming multimeric complexes that are resolved upon Setdb1 binding. Setdb1 binds to Atf7IP through coiled coil interactions that include both Setdb1 nuclear export signals (NES). Atf7IP directly competes with CRM1 to bind the Setdb1 NES motifs, explaining how Atf7IP prevents CRM1-mediated nuclear export of Setdb1. Setdb1 also forms hetero-trimeric complexes with the Atf7IP paralog Atf7IP2 and we show that Setdb1 can form mixed heterotrimers comprising one copy of each Setdb1, Atf7IP and Atf7IP2. Atf7IP and Atf7IP2 are co-expressed in many tissues suggesting that heterotrimers with different compositions of Atf7IP and Atf7IP2 may differentially regulate H3K9me by fine-tuning Setdb1 localization and activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信