{"title":"使用多任务学习从消费者健康论坛中提取句子、实体和关键短语。","authors":"Tsaqif Naufal, Rahmad Mahendra, Alfan Farizki Wicaksono","doi":"10.1186/s13326-025-00329-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Online consumer health forums offer an alternative source of health-related information for internet users seeking specific details that may not be readily available through articles or other one-way communication channels. However, the effectiveness of these forums can be constrained by the limited number of healthcare professionals actively participating, which can impact response times to user inquiries. One potential solution to this issue is the integration of a semi-automatic system. A critical component of such a system is question processing, which often involves sentence recognition (SR), medical entity recognition (MER), and keyphrase extraction (KE) modules. We posit that the development of these three modules would enable the system to identify critical components of the question, thereby facilitating a deeper understanding of the question, and allowing for the re-formulation of more effective questions with extracted key information.</p><p><strong>Methods: </strong>This work contributes to two key aspects related to these three tasks. First, we expand and publicly release an Indonesian dataset for each task. Second, we establish a baseline for all three tasks within the Indonesian language domain by employing transformer-based models with nine distinct encoder variations. Our feature studies revealed an interdependence among these three tasks. Consequently, we propose several multi-task learning (MTL) models, both in pairwise and three-way configurations, incorporating parallel and hierarchical architectures.</p><p><strong>Results: </strong>Using F1-score at the chunk level, the inter-annotator agreements for SR, MER, and KE tasks were <math><mrow><mn>88.61</mn> <mo>%</mo> <mo>,</mo> <mn>64.83</mn> <mo>%</mo></mrow> </math> , and <math><mrow><mn>35.01</mn> <mo>%</mo></mrow> </math> respectively. In single-task learning (STL) settings, the best performance for each task was achieved by different model, with <math><msub><mtext>IndoNLU</mtext> <mtext>LARGE</mtext></msub> </math> obtained the highest average score. These results suggested that a larger model did not always perform better. We also found no indication of which ones between Indonesian and multilingual language models that generally performed better for our tasks. In pairwise MTL settings, we found that pairing tasks could outperform the STL baseline for all three tasks. Despite varying loss weights across our three-way MTL models, we did not identify a consistent pattern. While some configurations improved MER and KE performance, none surpassed the best pairwise MTL model for the SR task.</p><p><strong>Conclusion: </strong>We extended an Indonesian dataset for SR, MER, and KE tasks, resulted in 1, 173 labeled data points which splitted into 773 training instances, 200 validation instances, and 200 testing instances. We then used transformer-based models to set a baseline for all three tasks. Our MTL experiments suggested that additional information regarding the other two tasks could help the learning process for MER and KE tasks, while had only a small effect for SR task.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"16 1","pages":"8"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057135/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sentences, entities, and keyphrases extraction from consumer health forums using multi-task learning.\",\"authors\":\"Tsaqif Naufal, Rahmad Mahendra, Alfan Farizki Wicaksono\",\"doi\":\"10.1186/s13326-025-00329-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Online consumer health forums offer an alternative source of health-related information for internet users seeking specific details that may not be readily available through articles or other one-way communication channels. However, the effectiveness of these forums can be constrained by the limited number of healthcare professionals actively participating, which can impact response times to user inquiries. One potential solution to this issue is the integration of a semi-automatic system. A critical component of such a system is question processing, which often involves sentence recognition (SR), medical entity recognition (MER), and keyphrase extraction (KE) modules. We posit that the development of these three modules would enable the system to identify critical components of the question, thereby facilitating a deeper understanding of the question, and allowing for the re-formulation of more effective questions with extracted key information.</p><p><strong>Methods: </strong>This work contributes to two key aspects related to these three tasks. First, we expand and publicly release an Indonesian dataset for each task. Second, we establish a baseline for all three tasks within the Indonesian language domain by employing transformer-based models with nine distinct encoder variations. Our feature studies revealed an interdependence among these three tasks. Consequently, we propose several multi-task learning (MTL) models, both in pairwise and three-way configurations, incorporating parallel and hierarchical architectures.</p><p><strong>Results: </strong>Using F1-score at the chunk level, the inter-annotator agreements for SR, MER, and KE tasks were <math><mrow><mn>88.61</mn> <mo>%</mo> <mo>,</mo> <mn>64.83</mn> <mo>%</mo></mrow> </math> , and <math><mrow><mn>35.01</mn> <mo>%</mo></mrow> </math> respectively. In single-task learning (STL) settings, the best performance for each task was achieved by different model, with <math><msub><mtext>IndoNLU</mtext> <mtext>LARGE</mtext></msub> </math> obtained the highest average score. These results suggested that a larger model did not always perform better. We also found no indication of which ones between Indonesian and multilingual language models that generally performed better for our tasks. In pairwise MTL settings, we found that pairing tasks could outperform the STL baseline for all three tasks. Despite varying loss weights across our three-way MTL models, we did not identify a consistent pattern. While some configurations improved MER and KE performance, none surpassed the best pairwise MTL model for the SR task.</p><p><strong>Conclusion: </strong>We extended an Indonesian dataset for SR, MER, and KE tasks, resulted in 1, 173 labeled data points which splitted into 773 training instances, 200 validation instances, and 200 testing instances. We then used transformer-based models to set a baseline for all three tasks. Our MTL experiments suggested that additional information regarding the other two tasks could help the learning process for MER and KE tasks, while had only a small effect for SR task.</p>\",\"PeriodicalId\":15055,\"journal\":{\"name\":\"Journal of Biomedical Semantics\",\"volume\":\"16 1\",\"pages\":\"8\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057135/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Semantics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13326-025-00329-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-025-00329-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Sentences, entities, and keyphrases extraction from consumer health forums using multi-task learning.
Purpose: Online consumer health forums offer an alternative source of health-related information for internet users seeking specific details that may not be readily available through articles or other one-way communication channels. However, the effectiveness of these forums can be constrained by the limited number of healthcare professionals actively participating, which can impact response times to user inquiries. One potential solution to this issue is the integration of a semi-automatic system. A critical component of such a system is question processing, which often involves sentence recognition (SR), medical entity recognition (MER), and keyphrase extraction (KE) modules. We posit that the development of these three modules would enable the system to identify critical components of the question, thereby facilitating a deeper understanding of the question, and allowing for the re-formulation of more effective questions with extracted key information.
Methods: This work contributes to two key aspects related to these three tasks. First, we expand and publicly release an Indonesian dataset for each task. Second, we establish a baseline for all three tasks within the Indonesian language domain by employing transformer-based models with nine distinct encoder variations. Our feature studies revealed an interdependence among these three tasks. Consequently, we propose several multi-task learning (MTL) models, both in pairwise and three-way configurations, incorporating parallel and hierarchical architectures.
Results: Using F1-score at the chunk level, the inter-annotator agreements for SR, MER, and KE tasks were , and respectively. In single-task learning (STL) settings, the best performance for each task was achieved by different model, with obtained the highest average score. These results suggested that a larger model did not always perform better. We also found no indication of which ones between Indonesian and multilingual language models that generally performed better for our tasks. In pairwise MTL settings, we found that pairing tasks could outperform the STL baseline for all three tasks. Despite varying loss weights across our three-way MTL models, we did not identify a consistent pattern. While some configurations improved MER and KE performance, none surpassed the best pairwise MTL model for the SR task.
Conclusion: We extended an Indonesian dataset for SR, MER, and KE tasks, resulted in 1, 173 labeled data points which splitted into 773 training instances, 200 validation instances, and 200 testing instances. We then used transformer-based models to set a baseline for all three tasks. Our MTL experiments suggested that additional information regarding the other two tasks could help the learning process for MER and KE tasks, while had only a small effect for SR task.
期刊介绍:
Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas:
Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability.
Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.