{"title":"脑卒中治疗结果的自动预测:最新进展和前景。","authors":"Zeynel A Samak, Philip Clatworthy, Majid Mirmehdi","doi":"10.1007/s13534-025-00462-y","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke is a major global health problem that causes mortality and morbidity. Predicting the outcomes of stroke intervention can facilitate clinical decision-making and improve patient care. Engaging and developing deep learning techniques can help to analyse large and diverse medical data, including brain scans, medical reports, and other sensor information, such as EEG, ECG, EMG, and so on. Despite the common data standardisation challenge within the medical image analysis domain, the future of deep learning in stroke outcome prediction lies in using multimodal information, including final infarct data, to achieve better prediction of long-term functional outcomes. This article provides a broad review of recent advances and applications of deep learning in the prediction of stroke outcomes, including (i) the data and models used, (ii) the prediction tasks and measures of success, (iii) the current challenges and limitations, and (iv) future directions and potential benefits. This comprehensive review aims to provide researchers, clinicians, and policy makers with an up-to-date understanding of this rapidly evolving and promising field.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 3","pages":"467-488"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011689/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic prediction of stroke treatment outcomes: latest advances and perspectives.\",\"authors\":\"Zeynel A Samak, Philip Clatworthy, Majid Mirmehdi\",\"doi\":\"10.1007/s13534-025-00462-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stroke is a major global health problem that causes mortality and morbidity. Predicting the outcomes of stroke intervention can facilitate clinical decision-making and improve patient care. Engaging and developing deep learning techniques can help to analyse large and diverse medical data, including brain scans, medical reports, and other sensor information, such as EEG, ECG, EMG, and so on. Despite the common data standardisation challenge within the medical image analysis domain, the future of deep learning in stroke outcome prediction lies in using multimodal information, including final infarct data, to achieve better prediction of long-term functional outcomes. This article provides a broad review of recent advances and applications of deep learning in the prediction of stroke outcomes, including (i) the data and models used, (ii) the prediction tasks and measures of success, (iii) the current challenges and limitations, and (iv) future directions and potential benefits. This comprehensive review aims to provide researchers, clinicians, and policy makers with an up-to-date understanding of this rapidly evolving and promising field.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":\"15 3\",\"pages\":\"467-488\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011689/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-025-00462-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-025-00462-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Automatic prediction of stroke treatment outcomes: latest advances and perspectives.
Stroke is a major global health problem that causes mortality and morbidity. Predicting the outcomes of stroke intervention can facilitate clinical decision-making and improve patient care. Engaging and developing deep learning techniques can help to analyse large and diverse medical data, including brain scans, medical reports, and other sensor information, such as EEG, ECG, EMG, and so on. Despite the common data standardisation challenge within the medical image analysis domain, the future of deep learning in stroke outcome prediction lies in using multimodal information, including final infarct data, to achieve better prediction of long-term functional outcomes. This article provides a broad review of recent advances and applications of deep learning in the prediction of stroke outcomes, including (i) the data and models used, (ii) the prediction tasks and measures of success, (iii) the current challenges and limitations, and (iv) future directions and potential benefits. This comprehensive review aims to provide researchers, clinicians, and policy makers with an up-to-date understanding of this rapidly evolving and promising field.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.