Timothy Lam, Henry T Quach, Lauren Hall, Maria Abou Chakra, Amy P Wong
{"title":"多学科方法对虚拟人肺建模。","authors":"Timothy Lam, Henry T Quach, Lauren Hall, Maria Abou Chakra, Amy P Wong","doi":"10.1038/s41540-025-00517-x","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating biological data with in silico modeling offers the transformative potential to develop virtual human models, or \"digital twins.\" These models hold immense promise for deepening our understanding of diseases and uncovering new therapeutic strategies. This approach is especially valuable for diseases lacking reliable models. Here we review current modelling efforts in of human lung development, highlighting the role of interdisciplinary collaboration and key advances toward a digital lung twin.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"38"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008392/pdf/","citationCount":"0","resultStr":"{\"title\":\"A multidisciplinary approach towards modeling of a virtual human lung.\",\"authors\":\"Timothy Lam, Henry T Quach, Lauren Hall, Maria Abou Chakra, Amy P Wong\",\"doi\":\"10.1038/s41540-025-00517-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrating biological data with in silico modeling offers the transformative potential to develop virtual human models, or \\\"digital twins.\\\" These models hold immense promise for deepening our understanding of diseases and uncovering new therapeutic strategies. This approach is especially valuable for diseases lacking reliable models. Here we review current modelling efforts in of human lung development, highlighting the role of interdisciplinary collaboration and key advances toward a digital lung twin.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"11 1\",\"pages\":\"38\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008392/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-025-00517-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00517-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A multidisciplinary approach towards modeling of a virtual human lung.
Integrating biological data with in silico modeling offers the transformative potential to develop virtual human models, or "digital twins." These models hold immense promise for deepening our understanding of diseases and uncovering new therapeutic strategies. This approach is especially valuable for diseases lacking reliable models. Here we review current modelling efforts in of human lung development, highlighting the role of interdisciplinary collaboration and key advances toward a digital lung twin.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.