[基于时间算法优化变分模态分解的电阻抗断层扫描肺通气与肺灌注信号分离方法研究]。

Q4 Medicine
Guobin Gao, Kun Li, Junyao Li, Mingxu Zhu, Yu Wang, Xiaoheng Yan, Xuetao Shi
{"title":"[基于时间算法优化变分模态分解的电阻抗断层扫描肺通气与肺灌注信号分离方法研究]。","authors":"Guobin Gao, Kun Li, Junyao Li, Mingxu Zhu, Yu Wang, Xiaoheng Yan, Xuetao Shi","doi":"10.7507/1001-5515.202410012","DOIUrl":null,"url":null,"abstract":"<p><p>Real-time acquisition of pulmonary ventilation and perfusion information through thoracic electrical impedance tomography (EIT) holds significant clinical value. This study proposes a novel method based on the rime (RIME) algorithm-optimized variational mode decomposition (VMD) to separate lung ventilation and perfusion signals directly from raw voltage data prior to EIT image reconstruction, enabling independent imaging of both parameters. To validate this approach, EIT data were collected from 16 healthy volunteers under normal breathing and inspiratory breath-holding conditions. The RIME algorithm was employed to optimize VMD parameters by minimizing envelope entropy as the fitness function. The optimized VMD was then applied to separate raw data across all measurement channels in EIT, with spectral analysis identifying relevant components to reconstruct ventilation and perfusion signals. Results demonstrated that the structural similarity index (SSIM) between perfusion images derived from normal breathing and breath-holding states averaged approximately 84% across all 16 subjects, significantly outperforming traditional frequency-domain filtering methods in perfusion imaging accuracy. This method offers a promising technical advancement for real-time monitoring of pulmonary ventilation and perfusion, holding significant value for advancing the clinical application of EIT in the diagnosis and treatment of respiratory diseases.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 2","pages":"228-236"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035631/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Study on the separation method of lung ventilation and lung perfusion signals in electrical impedance tomography based on rime algorithm optimized variational mode decomposition].\",\"authors\":\"Guobin Gao, Kun Li, Junyao Li, Mingxu Zhu, Yu Wang, Xiaoheng Yan, Xuetao Shi\",\"doi\":\"10.7507/1001-5515.202410012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Real-time acquisition of pulmonary ventilation and perfusion information through thoracic electrical impedance tomography (EIT) holds significant clinical value. This study proposes a novel method based on the rime (RIME) algorithm-optimized variational mode decomposition (VMD) to separate lung ventilation and perfusion signals directly from raw voltage data prior to EIT image reconstruction, enabling independent imaging of both parameters. To validate this approach, EIT data were collected from 16 healthy volunteers under normal breathing and inspiratory breath-holding conditions. The RIME algorithm was employed to optimize VMD parameters by minimizing envelope entropy as the fitness function. The optimized VMD was then applied to separate raw data across all measurement channels in EIT, with spectral analysis identifying relevant components to reconstruct ventilation and perfusion signals. Results demonstrated that the structural similarity index (SSIM) between perfusion images derived from normal breathing and breath-holding states averaged approximately 84% across all 16 subjects, significantly outperforming traditional frequency-domain filtering methods in perfusion imaging accuracy. This method offers a promising technical advancement for real-time monitoring of pulmonary ventilation and perfusion, holding significant value for advancing the clinical application of EIT in the diagnosis and treatment of respiratory diseases.</p>\",\"PeriodicalId\":39324,\"journal\":{\"name\":\"生物医学工程学杂志\",\"volume\":\"42 2\",\"pages\":\"228-236\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035631/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程学杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.7507/1001-5515.202410012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202410012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

通过胸电阻抗断层扫描(EIT)实时获取肺通气和灌注信息具有重要的临床价值。本研究提出了一种基于rime算法优化的变分模态分解(VMD)的新方法,在EIT图像重建之前直接从原始电压数据中分离出肺通气和灌注信号,从而实现这两个参数的独立成像。为了验证这一方法,我们收集了16名正常呼吸和吸气屏气条件下的健康志愿者的EIT数据。采用RIME算法通过最小化包络熵作为适应度函数来优化VMD参数。然后应用优化后的VMD分离EIT中所有测量通道的原始数据,通过光谱分析识别相关成分,重建通风和灌注信号。结果表明,在所有16名受试者中,正常呼吸和屏气状态下的灌注图像之间的结构相似指数(SSIM)平均约为84%,在灌注成像精度方面明显优于传统的频域滤波方法。该方法为实时监测肺通气和灌注提供了有前景的技术进步,对推进EIT在呼吸系统疾病诊断和治疗中的临床应用具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Study on the separation method of lung ventilation and lung perfusion signals in electrical impedance tomography based on rime algorithm optimized variational mode decomposition].

Real-time acquisition of pulmonary ventilation and perfusion information through thoracic electrical impedance tomography (EIT) holds significant clinical value. This study proposes a novel method based on the rime (RIME) algorithm-optimized variational mode decomposition (VMD) to separate lung ventilation and perfusion signals directly from raw voltage data prior to EIT image reconstruction, enabling independent imaging of both parameters. To validate this approach, EIT data were collected from 16 healthy volunteers under normal breathing and inspiratory breath-holding conditions. The RIME algorithm was employed to optimize VMD parameters by minimizing envelope entropy as the fitness function. The optimized VMD was then applied to separate raw data across all measurement channels in EIT, with spectral analysis identifying relevant components to reconstruct ventilation and perfusion signals. Results demonstrated that the structural similarity index (SSIM) between perfusion images derived from normal breathing and breath-holding states averaged approximately 84% across all 16 subjects, significantly outperforming traditional frequency-domain filtering methods in perfusion imaging accuracy. This method offers a promising technical advancement for real-time monitoring of pulmonary ventilation and perfusion, holding significant value for advancing the clinical application of EIT in the diagnosis and treatment of respiratory diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信