Anirudh Bommireddy, Zachary S Mayo, Chandana A Reddy, Cole Billena, Erik M Davies, Robin W Davis, Erin S Murphy, John H Suh, Ehsan H Balagamwala, Timothy A Chan, Jennifer S Yu, Gene H Barnett, Lilyana Angelov, Alireza M Mohammadi, Glen H J Stevens, Matthew Grabowski, David M Peereboom, Samuel T Chao
{"title":"用于预测完整脑转移瘤单次立体定向放射手术后放射性坏死的递归分割分析的发展。","authors":"Anirudh Bommireddy, Zachary S Mayo, Chandana A Reddy, Cole Billena, Erik M Davies, Robin W Davis, Erin S Murphy, John H Suh, Ehsan H Balagamwala, Timothy A Chan, Jennifer S Yu, Gene H Barnett, Lilyana Angelov, Alireza M Mohammadi, Glen H J Stevens, Matthew Grabowski, David M Peereboom, Samuel T Chao","doi":"10.1007/s11060-025-05062-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose/objective: </strong>Radiation necrosis (RN) is a potential complication after stereotactic radiosurgery (SRS) for brain metastases. This study develops a recursive partitioning analysis (RPA) to identify patients at risk for RN following SRS.</p><p><strong>Methods: </strong>Patients who underwent single-fraction SRS for intact brain metastases at a single institution from 2017 to 2021 were identified. Cox regression identified factors associated with RN, and variables with p < 0.1 were included in the RPA. Patients with staged SRS, incomplete records, or less than 3 months of follow-up were excluded.</p><p><strong>Results: </strong>The study included 170 patients with 919 lesions, with median follow-up of 9 months. Primary disease sites were non-small cell lung cancer (NSCLC, 49%), breast cancer (12%), melanoma (11%), renal cancer (6%), and others (22%). Median prescription dose was 24 Gy, and median maximum lesion dimension (MLD) was 0.7 cm. RN occurred in 110 (12.2%) lesions, of which 32 (3.5%) were symptomatic, at median of 4.9 months after SRS. Variables for RPA included primary disease site, tumor location, MLD, prior SRS, number of SRS targets, dosimetry, prior hemorrhage, and concurrent systemic therapy. RPA identified four groups: Group 1 (MLD ≤ 0.8 cm, non-breast/NSCLC/renal), Group 2 (MLD ≤ 0.8 cm, breast/NSCLC/renal), Group 3 (MLD > 0.8 cm, no post-SRS hemorrhage), and Group 4 (MLD > 0.8 cm, post-SRS hemorrhage). Two-year RN free survival was 99% (Group 1), 89% (Group 2), 70% (Group 3), and 52% (Group 4).</p><p><strong>Conclusion: </strong>This is the first RPA model for RN after single-fraction SRS, which may aid in risk assessment and distinguishing RN from tumor progression.</p>","PeriodicalId":16425,"journal":{"name":"Journal of Neuro-Oncology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a recursive partitioning analysis for prediction of radiation necrosis following single-fraction stereotactic radiosurgery for intact brain metastases.\",\"authors\":\"Anirudh Bommireddy, Zachary S Mayo, Chandana A Reddy, Cole Billena, Erik M Davies, Robin W Davis, Erin S Murphy, John H Suh, Ehsan H Balagamwala, Timothy A Chan, Jennifer S Yu, Gene H Barnett, Lilyana Angelov, Alireza M Mohammadi, Glen H J Stevens, Matthew Grabowski, David M Peereboom, Samuel T Chao\",\"doi\":\"10.1007/s11060-025-05062-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose/objective: </strong>Radiation necrosis (RN) is a potential complication after stereotactic radiosurgery (SRS) for brain metastases. This study develops a recursive partitioning analysis (RPA) to identify patients at risk for RN following SRS.</p><p><strong>Methods: </strong>Patients who underwent single-fraction SRS for intact brain metastases at a single institution from 2017 to 2021 were identified. Cox regression identified factors associated with RN, and variables with p < 0.1 were included in the RPA. Patients with staged SRS, incomplete records, or less than 3 months of follow-up were excluded.</p><p><strong>Results: </strong>The study included 170 patients with 919 lesions, with median follow-up of 9 months. Primary disease sites were non-small cell lung cancer (NSCLC, 49%), breast cancer (12%), melanoma (11%), renal cancer (6%), and others (22%). Median prescription dose was 24 Gy, and median maximum lesion dimension (MLD) was 0.7 cm. RN occurred in 110 (12.2%) lesions, of which 32 (3.5%) were symptomatic, at median of 4.9 months after SRS. Variables for RPA included primary disease site, tumor location, MLD, prior SRS, number of SRS targets, dosimetry, prior hemorrhage, and concurrent systemic therapy. RPA identified four groups: Group 1 (MLD ≤ 0.8 cm, non-breast/NSCLC/renal), Group 2 (MLD ≤ 0.8 cm, breast/NSCLC/renal), Group 3 (MLD > 0.8 cm, no post-SRS hemorrhage), and Group 4 (MLD > 0.8 cm, post-SRS hemorrhage). Two-year RN free survival was 99% (Group 1), 89% (Group 2), 70% (Group 3), and 52% (Group 4).</p><p><strong>Conclusion: </strong>This is the first RPA model for RN after single-fraction SRS, which may aid in risk assessment and distinguishing RN from tumor progression.</p>\",\"PeriodicalId\":16425,\"journal\":{\"name\":\"Journal of Neuro-Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuro-Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11060-025-05062-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuro-Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11060-025-05062-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Development of a recursive partitioning analysis for prediction of radiation necrosis following single-fraction stereotactic radiosurgery for intact brain metastases.
Purpose/objective: Radiation necrosis (RN) is a potential complication after stereotactic radiosurgery (SRS) for brain metastases. This study develops a recursive partitioning analysis (RPA) to identify patients at risk for RN following SRS.
Methods: Patients who underwent single-fraction SRS for intact brain metastases at a single institution from 2017 to 2021 were identified. Cox regression identified factors associated with RN, and variables with p < 0.1 were included in the RPA. Patients with staged SRS, incomplete records, or less than 3 months of follow-up were excluded.
Results: The study included 170 patients with 919 lesions, with median follow-up of 9 months. Primary disease sites were non-small cell lung cancer (NSCLC, 49%), breast cancer (12%), melanoma (11%), renal cancer (6%), and others (22%). Median prescription dose was 24 Gy, and median maximum lesion dimension (MLD) was 0.7 cm. RN occurred in 110 (12.2%) lesions, of which 32 (3.5%) were symptomatic, at median of 4.9 months after SRS. Variables for RPA included primary disease site, tumor location, MLD, prior SRS, number of SRS targets, dosimetry, prior hemorrhage, and concurrent systemic therapy. RPA identified four groups: Group 1 (MLD ≤ 0.8 cm, non-breast/NSCLC/renal), Group 2 (MLD ≤ 0.8 cm, breast/NSCLC/renal), Group 3 (MLD > 0.8 cm, no post-SRS hemorrhage), and Group 4 (MLD > 0.8 cm, post-SRS hemorrhage). Two-year RN free survival was 99% (Group 1), 89% (Group 2), 70% (Group 3), and 52% (Group 4).
Conclusion: This is the first RPA model for RN after single-fraction SRS, which may aid in risk assessment and distinguishing RN from tumor progression.
期刊介绍:
The Journal of Neuro-Oncology is a multi-disciplinary journal encompassing basic, applied, and clinical investigations in all research areas as they relate to cancer and the central nervous system. It provides a single forum for communication among neurologists, neurosurgeons, radiotherapists, medical oncologists, neuropathologists, neurodiagnosticians, and laboratory-based oncologists conducting relevant research. The Journal of Neuro-Oncology does not seek to isolate the field, but rather to focus the efforts of many disciplines in one publication through a format which pulls together these diverse interests. More than any other field of oncology, cancer of the central nervous system requires multi-disciplinary approaches. To alleviate having to scan dozens of journals of cell biology, pathology, laboratory and clinical endeavours, JNO is a periodical in which current, high-quality, relevant research in all aspects of neuro-oncology may be found.