{"title":"评价选择多模态数据融合方法的信息理论方法。","authors":"Tengyue Zhang , Ruiwen Ding , Kha-Dinh Luong , William Hsu","doi":"10.1016/j.jbi.2025.104833","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><div>Interest has grown in combining radiology, pathology, genomic, and clinical data to improve the accuracy of diagnostic and prognostic predictions toward precision health. However, most existing works choose their datasets and modeling approaches empirically and in an ad hoc manner. A prior study proposed four partial information decomposition (PID)-based metrics to provide a theoretical understanding of multimodal data interactions: redundancy, uniqueness of each modality, and synergy. However, these metrics have only been evaluated in a limited collection of biomedical data, and the existing work does not elucidate the effect of parameter selection when calculating the PID metrics. In this work, we evaluate PID metrics on a wider range of biomedical data, including clinical, radiology, pathology, and genomic data, and propose potential improvements to the PID metrics.</div></div><div><h3>Methods:</h3><div>We apply the PID metrics to seven different modality pairs across four distinct cohorts (datasets). We compare and interpret trends in the resulting PID metrics and downstream model performance in these multimodal cohorts. The downstream tasks being evaluated include predicting the prognosis (either overall survival or recurrence) of patients with non-small cell lung cancer, prostate cancer, and glioblastoma.</div></div><div><h3>Results:</h3><div>We found that, while PID metrics are informative, solely relying on these metrics to decide on a fusion approach does not always yield a machine learning model with optimal performance. Of the seven different modality pairs, three had poor (0%), three had moderate (66%–89%), and only one had perfect (100%) consistency between the PID values and model performance. We propose two improvements to the PID metrics (determining the optimal parameters and uncertainty estimation) and identified areas where PID metrics could be further improved.</div></div><div><h3>Conclusion:</h3><div>The current PID metrics are not accurate enough for estimating the multimodal data interactions and need to be improved before they can serve as a reliable tool. We propose improvements and provide suggestions for future work. Code: <span><span>https://github.com/zhtyolivia/pid-multimodal</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"167 ","pages":"Article 104833"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating an information theoretic approach for selecting multimodal data fusion methods\",\"authors\":\"Tengyue Zhang , Ruiwen Ding , Kha-Dinh Luong , William Hsu\",\"doi\":\"10.1016/j.jbi.2025.104833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective:</h3><div>Interest has grown in combining radiology, pathology, genomic, and clinical data to improve the accuracy of diagnostic and prognostic predictions toward precision health. However, most existing works choose their datasets and modeling approaches empirically and in an ad hoc manner. A prior study proposed four partial information decomposition (PID)-based metrics to provide a theoretical understanding of multimodal data interactions: redundancy, uniqueness of each modality, and synergy. However, these metrics have only been evaluated in a limited collection of biomedical data, and the existing work does not elucidate the effect of parameter selection when calculating the PID metrics. In this work, we evaluate PID metrics on a wider range of biomedical data, including clinical, radiology, pathology, and genomic data, and propose potential improvements to the PID metrics.</div></div><div><h3>Methods:</h3><div>We apply the PID metrics to seven different modality pairs across four distinct cohorts (datasets). We compare and interpret trends in the resulting PID metrics and downstream model performance in these multimodal cohorts. The downstream tasks being evaluated include predicting the prognosis (either overall survival or recurrence) of patients with non-small cell lung cancer, prostate cancer, and glioblastoma.</div></div><div><h3>Results:</h3><div>We found that, while PID metrics are informative, solely relying on these metrics to decide on a fusion approach does not always yield a machine learning model with optimal performance. Of the seven different modality pairs, three had poor (0%), three had moderate (66%–89%), and only one had perfect (100%) consistency between the PID values and model performance. We propose two improvements to the PID metrics (determining the optimal parameters and uncertainty estimation) and identified areas where PID metrics could be further improved.</div></div><div><h3>Conclusion:</h3><div>The current PID metrics are not accurate enough for estimating the multimodal data interactions and need to be improved before they can serve as a reliable tool. We propose improvements and provide suggestions for future work. Code: <span><span>https://github.com/zhtyolivia/pid-multimodal</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"167 \",\"pages\":\"Article 104833\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046425000620\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000620","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Evaluating an information theoretic approach for selecting multimodal data fusion methods
Objective:
Interest has grown in combining radiology, pathology, genomic, and clinical data to improve the accuracy of diagnostic and prognostic predictions toward precision health. However, most existing works choose their datasets and modeling approaches empirically and in an ad hoc manner. A prior study proposed four partial information decomposition (PID)-based metrics to provide a theoretical understanding of multimodal data interactions: redundancy, uniqueness of each modality, and synergy. However, these metrics have only been evaluated in a limited collection of biomedical data, and the existing work does not elucidate the effect of parameter selection when calculating the PID metrics. In this work, we evaluate PID metrics on a wider range of biomedical data, including clinical, radiology, pathology, and genomic data, and propose potential improvements to the PID metrics.
Methods:
We apply the PID metrics to seven different modality pairs across four distinct cohorts (datasets). We compare and interpret trends in the resulting PID metrics and downstream model performance in these multimodal cohorts. The downstream tasks being evaluated include predicting the prognosis (either overall survival or recurrence) of patients with non-small cell lung cancer, prostate cancer, and glioblastoma.
Results:
We found that, while PID metrics are informative, solely relying on these metrics to decide on a fusion approach does not always yield a machine learning model with optimal performance. Of the seven different modality pairs, three had poor (0%), three had moderate (66%–89%), and only one had perfect (100%) consistency between the PID values and model performance. We propose two improvements to the PID metrics (determining the optimal parameters and uncertainty estimation) and identified areas where PID metrics could be further improved.
Conclusion:
The current PID metrics are not accurate enough for estimating the multimodal data interactions and need to be improved before they can serve as a reliable tool. We propose improvements and provide suggestions for future work. Code: https://github.com/zhtyolivia/pid-multimodal.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.