嗅觉性能解释了鳞翅目触角结构设计的双重性。

IF 3.5 1区 生物学 Q1 BIOLOGY
Mourad Jaffar-Bandjee, Thomas Engels, Thomas Steinmann, Gijs Krijnen, Jérôme Casas
{"title":"嗅觉性能解释了鳞翅目触角结构设计的双重性。","authors":"Mourad Jaffar-Bandjee, Thomas Engels, Thomas Steinmann, Gijs Krijnen, Jérôme Casas","doi":"10.1098/rspb.2024.2946","DOIUrl":null,"url":null,"abstract":"<p><p>Male attraction by females through sex pheromones is widespread among Lepidoptera, and antennae are key olfactory organs during male orientation. Broadly speaking, two designs of antennae coexist in Lepidoptera: complex (pectinate) or stick-like (filiform) ones. Pectinate antennae have attracted attention because of their multiscale geometry, assumed to outperform filiform. Yet, the filiform design is by far more common. We compare the olfactory performance of the two designs using modelling, particle image velocimetry on three-dimensional-printed scaled-up models and computational simulations. In terms of absolute odour capture, pectinate antennae perform better at nearly all flying speeds. However, when considering drag, filiform designs are more energy efficient than pectinate ones at low-flight speeds, while the reverse holds at high speeds. This is owing to the differential scaling of drag and molecule capture with flight speed. According to our results, small and slow moths would bear filiform antennae whereas big and fast moths would have pectinate ones, which is the general trend observed in nature. We discuss exceptions to this general pattern and how species could evolve from one design to the other by investigating the influence of the antennal structural elements.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2045","pages":"20242946"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001076/pdf/","citationCount":"0","resultStr":"{\"title\":\"Olfactory performance explains duality of antennal architectural designs in Lepidoptera.\",\"authors\":\"Mourad Jaffar-Bandjee, Thomas Engels, Thomas Steinmann, Gijs Krijnen, Jérôme Casas\",\"doi\":\"10.1098/rspb.2024.2946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Male attraction by females through sex pheromones is widespread among Lepidoptera, and antennae are key olfactory organs during male orientation. Broadly speaking, two designs of antennae coexist in Lepidoptera: complex (pectinate) or stick-like (filiform) ones. Pectinate antennae have attracted attention because of their multiscale geometry, assumed to outperform filiform. Yet, the filiform design is by far more common. We compare the olfactory performance of the two designs using modelling, particle image velocimetry on three-dimensional-printed scaled-up models and computational simulations. In terms of absolute odour capture, pectinate antennae perform better at nearly all flying speeds. However, when considering drag, filiform designs are more energy efficient than pectinate ones at low-flight speeds, while the reverse holds at high speeds. This is owing to the differential scaling of drag and molecule capture with flight speed. According to our results, small and slow moths would bear filiform antennae whereas big and fast moths would have pectinate ones, which is the general trend observed in nature. We discuss exceptions to this general pattern and how species could evolve from one design to the other by investigating the influence of the antennal structural elements.</p>\",\"PeriodicalId\":20589,\"journal\":{\"name\":\"Proceedings of the Royal Society B: Biological Sciences\",\"volume\":\"292 2045\",\"pages\":\"20242946\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001076/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rspb.2024.2946\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.2946","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在鳞翅目昆虫中,雌性通过性信息素吸引雄性的现象非常普遍,而触角是雄性定向过程中的关键嗅觉器官。从广义上讲,鳞翅目中有两种设计的触角并存:复杂的(栉状的)或棒状的(丝状的)。蜂状天线因其多尺度几何特性而备受关注,被认为优于丝状天线。然而,丝状设计更常见。我们使用建模、粒子图像测速在三维打印放大模型和计算模拟上比较了两种设计的嗅觉性能。就绝对气味捕获而言,雀形天线在几乎所有飞行速度下都表现得更好。然而,当考虑阻力时,在低飞行速度下,丝状设计比羽状设计更节能,而在高速飞行时则相反。这是由于阻力和分子捕获随飞行速度的不同比例。根据我们的研究结果,小而慢的飞蛾具有丝状触角,而大而快的飞蛾具有栉状触角,这是自然界观察到的普遍趋势。我们讨论了这种一般模式的例外情况,以及物种如何通过研究触角结构元素的影响从一种设计进化到另一种设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Olfactory performance explains duality of antennal architectural designs in Lepidoptera.

Male attraction by females through sex pheromones is widespread among Lepidoptera, and antennae are key olfactory organs during male orientation. Broadly speaking, two designs of antennae coexist in Lepidoptera: complex (pectinate) or stick-like (filiform) ones. Pectinate antennae have attracted attention because of their multiscale geometry, assumed to outperform filiform. Yet, the filiform design is by far more common. We compare the olfactory performance of the two designs using modelling, particle image velocimetry on three-dimensional-printed scaled-up models and computational simulations. In terms of absolute odour capture, pectinate antennae perform better at nearly all flying speeds. However, when considering drag, filiform designs are more energy efficient than pectinate ones at low-flight speeds, while the reverse holds at high speeds. This is owing to the differential scaling of drag and molecule capture with flight speed. According to our results, small and slow moths would bear filiform antennae whereas big and fast moths would have pectinate ones, which is the general trend observed in nature. We discuss exceptions to this general pattern and how species could evolve from one design to the other by investigating the influence of the antennal structural elements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
4.30%
发文量
502
审稿时长
1 months
期刊介绍: Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信