烟曲霉疏水酶交联键的理论构象分析。

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fabiola E Medina, Juana Coloma, Claudia Oviedo
{"title":"烟曲霉疏水酶交联键的理论构象分析。","authors":"Fabiola E Medina, Juana Coloma, Claudia Oviedo","doi":"10.1080/07391102.2025.2496289","DOIUrl":null,"url":null,"abstract":"<p><p><i>Aspergillus fumigatus</i> is a common saprophytic filamentous fungus that plays a crucial role in nutrient cycling but can become an opportunistic pathogen, posing a significant threat to immunocompromised individuals by causing invasive aspergillosis. A key feature of <i>A. fumigatus</i> is the presence of hydrophobins-small amphipathic proteins that form a protective rodlet layer on conidial surfaces, facilitating biofilm formation and immune evasion. This rodlet structure, stabilized by cross-linking disulfide bonds, provides resistance to desiccation, oxidative stress, and immune defenses, making these cross-links a compelling target for study. In this work, we employ all-atom simulations, incorporating quantum mechanics/molecular mechanics (QM/MM) calculations, to evaluate the energy and conformational effects of cross-linking disulfide bonds (CL1, CL2, CL3, and CL4) in the rodlet assembly. By integrating QM/MM approaches, we achieve a detailed representation of the electronic and structural properties of these bonds within the complex rodlet layer, gaining deeper insights into their essential role in maintaining the stability and integrity of the <i>RodA</i> hydrophobin protein from <i>A. fumigatus</i> conidial surface. We identify a group of ten residues that influence directly in the cross-linking, with Gln23 and Lys17 emerging as key candidates for experimental mutation to control rodlet assembly. Our findings shed light on the molecular mechanisms underlying rodlet formation and highlight potential targets for disrupting this protective layer, offering promising avenues for antifungal strategies.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-10"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical conformational analysis of cross-linking bonds in fungal hydrophobin from <i>Aspergillus fumigatus</i>.\",\"authors\":\"Fabiola E Medina, Juana Coloma, Claudia Oviedo\",\"doi\":\"10.1080/07391102.2025.2496289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Aspergillus fumigatus</i> is a common saprophytic filamentous fungus that plays a crucial role in nutrient cycling but can become an opportunistic pathogen, posing a significant threat to immunocompromised individuals by causing invasive aspergillosis. A key feature of <i>A. fumigatus</i> is the presence of hydrophobins-small amphipathic proteins that form a protective rodlet layer on conidial surfaces, facilitating biofilm formation and immune evasion. This rodlet structure, stabilized by cross-linking disulfide bonds, provides resistance to desiccation, oxidative stress, and immune defenses, making these cross-links a compelling target for study. In this work, we employ all-atom simulations, incorporating quantum mechanics/molecular mechanics (QM/MM) calculations, to evaluate the energy and conformational effects of cross-linking disulfide bonds (CL1, CL2, CL3, and CL4) in the rodlet assembly. By integrating QM/MM approaches, we achieve a detailed representation of the electronic and structural properties of these bonds within the complex rodlet layer, gaining deeper insights into their essential role in maintaining the stability and integrity of the <i>RodA</i> hydrophobin protein from <i>A. fumigatus</i> conidial surface. We identify a group of ten residues that influence directly in the cross-linking, with Gln23 and Lys17 emerging as key candidates for experimental mutation to control rodlet assembly. Our findings shed light on the molecular mechanisms underlying rodlet formation and highlight potential targets for disrupting this protective layer, offering promising avenues for antifungal strategies.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2025.2496289\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2496289","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

烟曲霉是一种常见的腐生丝状真菌,在营养循环中起着至关重要的作用,但也可以成为一种机会性病原体,通过引起侵袭性曲霉病对免疫功能低下的个体构成重大威胁。烟曲霉的一个关键特征是疏水蛋白的存在,疏水蛋白是一种小的两性蛋白,在分生孢子表面形成保护性的小棒层,促进生物膜的形成和免疫逃逸。这种由交联二硫键稳定的棒状结构提供了对干燥、氧化应激和免疫防御的抵抗力,使这些交联成为研究的一个引人注目的目标。在这项工作中,我们采用全原子模拟,结合量子力学/分子力学(QM/MM)计算,来评估交联二硫键(CL1, CL2, CL3和CL4)在小棒组装中的能量和构象影响。通过整合QM/MM方法,我们获得了复杂棒状细胞层中这些键的电子和结构特性的详细表示,深入了解了它们在维持烟曲霉分生孢子表面RodA疏水蛋白的稳定性和完整性方面的重要作用。我们确定了一组直接影响交联的10个残基,其中Gln23和Lys17成为控制小棒组装的实验突变的关键候选者。我们的发现揭示了小棒形成的分子机制,并强调了破坏这一保护层的潜在靶点,为抗真菌策略提供了有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical conformational analysis of cross-linking bonds in fungal hydrophobin from Aspergillus fumigatus.

Aspergillus fumigatus is a common saprophytic filamentous fungus that plays a crucial role in nutrient cycling but can become an opportunistic pathogen, posing a significant threat to immunocompromised individuals by causing invasive aspergillosis. A key feature of A. fumigatus is the presence of hydrophobins-small amphipathic proteins that form a protective rodlet layer on conidial surfaces, facilitating biofilm formation and immune evasion. This rodlet structure, stabilized by cross-linking disulfide bonds, provides resistance to desiccation, oxidative stress, and immune defenses, making these cross-links a compelling target for study. In this work, we employ all-atom simulations, incorporating quantum mechanics/molecular mechanics (QM/MM) calculations, to evaluate the energy and conformational effects of cross-linking disulfide bonds (CL1, CL2, CL3, and CL4) in the rodlet assembly. By integrating QM/MM approaches, we achieve a detailed representation of the electronic and structural properties of these bonds within the complex rodlet layer, gaining deeper insights into their essential role in maintaining the stability and integrity of the RodA hydrophobin protein from A. fumigatus conidial surface. We identify a group of ten residues that influence directly in the cross-linking, with Gln23 and Lys17 emerging as key candidates for experimental mutation to control rodlet assembly. Our findings shed light on the molecular mechanisms underlying rodlet formation and highlight potential targets for disrupting this protective layer, offering promising avenues for antifungal strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信