急性心肌梗死的预测因素:7年随访后的机器学习分析。

IF 1.7 Q2 MEDICINE, GENERAL & INTERNAL
Marco Casciaro, Pierpaolo Di Micco, Alessandro Tonacci, Marco Vatrano, Vincenzo Russo, Carmine Siniscalchi, Sebastiano Gangemi, Egidio Imbalzano
{"title":"急性心肌梗死的预测因素:7年随访后的机器学习分析。","authors":"Marco Casciaro, Pierpaolo Di Micco, Alessandro Tonacci, Marco Vatrano, Vincenzo Russo, Carmine Siniscalchi, Sebastiano Gangemi, Egidio Imbalzano","doi":"10.3390/clinpract15040072","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Ischemic heart disease is a major global health problem with significant morbidity and mortality. Several cardiometabolic variables play a key role in the incidence of adverse cardiovascular outcomes. <b>Objectives:</b> The aim of the present study was to apply a machine learning approach to investigate factors that can predict acute coronary syndrome in patients with a previous episode. <b>Methods:</b> We recruited 652 patients, admitted to the hospital for acute coronary syndrome, eligible if undergoing immediate coronary revascularization procedures for ST-segment-elevation myocardial infarction or coronary revascularization procedures within 24 h. <b>Results:</b> Baseline pulse wave velocity appears to be the most predictive variable overall, followed by the occurrence of left ventricular hypertrophy and left ventricular end-diastolic diameters. We found that the potential of machine learning to predict life-threatening events is significant. <b>Conclusions:</b> Machine learning algorithms can be used to create models to identify patients at risk for acute myocardial infarction. However, great care must be taken with data quality and ethical use of these algorithms.</p>","PeriodicalId":45306,"journal":{"name":"Clinics and Practice","volume":"15 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025629/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predictors of Acute Myocardial Infarction: A Machine Learning Analysis After a 7-Year Follow-Up.\",\"authors\":\"Marco Casciaro, Pierpaolo Di Micco, Alessandro Tonacci, Marco Vatrano, Vincenzo Russo, Carmine Siniscalchi, Sebastiano Gangemi, Egidio Imbalzano\",\"doi\":\"10.3390/clinpract15040072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Ischemic heart disease is a major global health problem with significant morbidity and mortality. Several cardiometabolic variables play a key role in the incidence of adverse cardiovascular outcomes. <b>Objectives:</b> The aim of the present study was to apply a machine learning approach to investigate factors that can predict acute coronary syndrome in patients with a previous episode. <b>Methods:</b> We recruited 652 patients, admitted to the hospital for acute coronary syndrome, eligible if undergoing immediate coronary revascularization procedures for ST-segment-elevation myocardial infarction or coronary revascularization procedures within 24 h. <b>Results:</b> Baseline pulse wave velocity appears to be the most predictive variable overall, followed by the occurrence of left ventricular hypertrophy and left ventricular end-diastolic diameters. We found that the potential of machine learning to predict life-threatening events is significant. <b>Conclusions:</b> Machine learning algorithms can be used to create models to identify patients at risk for acute myocardial infarction. However, great care must be taken with data quality and ethical use of these algorithms.</p>\",\"PeriodicalId\":45306,\"journal\":{\"name\":\"Clinics and Practice\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025629/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinics and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/clinpract15040072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinics and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/clinpract15040072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:缺血性心脏病是全球主要的健康问题,发病率和死亡率都很高。几个心脏代谢变量在不良心血管结局的发生率中起关键作用。目的:本研究的目的是应用机器学习方法来研究可以预测既往发作患者急性冠状动脉综合征的因素。方法:我们招募了652例因急性冠状动脉综合征入院的患者,如果在24小时内接受st段抬高型心肌梗死的立即冠状动脉血运重建手术或冠状动脉血运重建手术,则符合条件。结果:基线脉波速度似乎是最具预测性的变量,其次是左室肥厚和左室舒张末期直径的发生。我们发现,机器学习预测危及生命事件的潜力是巨大的。结论:机器学习算法可用于创建模型来识别有急性心肌梗死风险的患者。然而,必须非常小心的数据质量和道德使用这些算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictors of Acute Myocardial Infarction: A Machine Learning Analysis After a 7-Year Follow-Up.

Background: Ischemic heart disease is a major global health problem with significant morbidity and mortality. Several cardiometabolic variables play a key role in the incidence of adverse cardiovascular outcomes. Objectives: The aim of the present study was to apply a machine learning approach to investigate factors that can predict acute coronary syndrome in patients with a previous episode. Methods: We recruited 652 patients, admitted to the hospital for acute coronary syndrome, eligible if undergoing immediate coronary revascularization procedures for ST-segment-elevation myocardial infarction or coronary revascularization procedures within 24 h. Results: Baseline pulse wave velocity appears to be the most predictive variable overall, followed by the occurrence of left ventricular hypertrophy and left ventricular end-diastolic diameters. We found that the potential of machine learning to predict life-threatening events is significant. Conclusions: Machine learning algorithms can be used to create models to identify patients at risk for acute myocardial infarction. However, great care must be taken with data quality and ethical use of these algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinics and Practice
Clinics and Practice MEDICINE, GENERAL & INTERNAL-
CiteScore
2.60
自引率
4.30%
发文量
91
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信