Thuc Ly, Athena E Golfinos-Owens, Naren Raja, Levi Arnold, Pachiappan Arjunan, John Ashcraft, Benjamin Martin, Shrikant Anant, Sumedha Gunewardena, Rong Wang, Huy Q Dinh, Sufi Mary Thomas
{"title":"靶向FGFR减缓肛门鳞状细胞癌患者衍生异种移植模型的肿瘤生长。","authors":"Thuc Ly, Athena E Golfinos-Owens, Naren Raja, Levi Arnold, Pachiappan Arjunan, John Ashcraft, Benjamin Martin, Shrikant Anant, Sumedha Gunewardena, Rong Wang, Huy Q Dinh, Sufi Mary Thomas","doi":"10.1002/mc.23919","DOIUrl":null,"url":null,"abstract":"<p><p>Anal squamous cell carcinoma (ASCC) is a rare malignancy with a rising incidence and limited treatment options. To identify actionable therapeutic targets, we developed a patient-derived xenograft (PDX) model using a metastatic ASCC sample and performed single-cell RNA sequencing. Our analysis confirmed previously reported genetic mutations highly expressed in the sample, along with copy number alterations, and revealed epithelial cancer cell heterogeneity. Notably, epithelial cells exhibited a low hybrid epithelial-mesenchymal transition (hEMT) signature compared to stromal cells. Among epithelial subpopulations, the most abundant cluster displayed high expression of FGFR1-2 and FGF ligands. Treatment with AZD4547, an FGFR1-3 inhibitor, resulted in a significant reduction in tumor volume over time (p = 0.0036). Immunohistochemistry staining for proliferative Ki67 and cleaved caspase 3 suggested ongoing proliferation in residual cells. Fourier-transform infrared (FTIR) spectroscopy of post-treatment residual tumors revealed significant differences in the Amide I and Amide II regions between AZD4547-treated and control groups. These findings demonstrate that FGFR inhibition effectively attenuates ASCC tumor growth and highlights the promise of precision medicine in managing this rare cancer.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1236-1246"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting FGFR Attenuates Tumor Growth in an Anal Squamous Cell Carcinoma Patient Derived Xenograft Model.\",\"authors\":\"Thuc Ly, Athena E Golfinos-Owens, Naren Raja, Levi Arnold, Pachiappan Arjunan, John Ashcraft, Benjamin Martin, Shrikant Anant, Sumedha Gunewardena, Rong Wang, Huy Q Dinh, Sufi Mary Thomas\",\"doi\":\"10.1002/mc.23919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anal squamous cell carcinoma (ASCC) is a rare malignancy with a rising incidence and limited treatment options. To identify actionable therapeutic targets, we developed a patient-derived xenograft (PDX) model using a metastatic ASCC sample and performed single-cell RNA sequencing. Our analysis confirmed previously reported genetic mutations highly expressed in the sample, along with copy number alterations, and revealed epithelial cancer cell heterogeneity. Notably, epithelial cells exhibited a low hybrid epithelial-mesenchymal transition (hEMT) signature compared to stromal cells. Among epithelial subpopulations, the most abundant cluster displayed high expression of FGFR1-2 and FGF ligands. Treatment with AZD4547, an FGFR1-3 inhibitor, resulted in a significant reduction in tumor volume over time (p = 0.0036). Immunohistochemistry staining for proliferative Ki67 and cleaved caspase 3 suggested ongoing proliferation in residual cells. Fourier-transform infrared (FTIR) spectroscopy of post-treatment residual tumors revealed significant differences in the Amide I and Amide II regions between AZD4547-treated and control groups. These findings demonstrate that FGFR inhibition effectively attenuates ASCC tumor growth and highlights the promise of precision medicine in managing this rare cancer.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":\" \",\"pages\":\"1236-1246\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.23919\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23919","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Targeting FGFR Attenuates Tumor Growth in an Anal Squamous Cell Carcinoma Patient Derived Xenograft Model.
Anal squamous cell carcinoma (ASCC) is a rare malignancy with a rising incidence and limited treatment options. To identify actionable therapeutic targets, we developed a patient-derived xenograft (PDX) model using a metastatic ASCC sample and performed single-cell RNA sequencing. Our analysis confirmed previously reported genetic mutations highly expressed in the sample, along with copy number alterations, and revealed epithelial cancer cell heterogeneity. Notably, epithelial cells exhibited a low hybrid epithelial-mesenchymal transition (hEMT) signature compared to stromal cells. Among epithelial subpopulations, the most abundant cluster displayed high expression of FGFR1-2 and FGF ligands. Treatment with AZD4547, an FGFR1-3 inhibitor, resulted in a significant reduction in tumor volume over time (p = 0.0036). Immunohistochemistry staining for proliferative Ki67 and cleaved caspase 3 suggested ongoing proliferation in residual cells. Fourier-transform infrared (FTIR) spectroscopy of post-treatment residual tumors revealed significant differences in the Amide I and Amide II regions between AZD4547-treated and control groups. These findings demonstrate that FGFR inhibition effectively attenuates ASCC tumor growth and highlights the promise of precision medicine in managing this rare cancer.
期刊介绍:
Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.