A B Zinnurova, K P Vorobyov, O V Bakina, E I Senkina, T B Lepekhina, V V Nikolaev, L V Spirina
{"title":"正常细胞和癌细胞中低温大气血浆代谢物谱的差异。","authors":"A B Zinnurova, K P Vorobyov, O V Bakina, E I Senkina, T B Lepekhina, V V Nikolaev, L V Spirina","doi":"10.1007/s10863-025-10061-2","DOIUrl":null,"url":null,"abstract":"<p><p>Cold atmospheric plasma (CAP) recently it has been introduced as an innovative therapeutic approach for cancer cell treatment. However the cancer treatment faces questions about the selective anti-cancer capacity of CAP, the distinct molecular responses between cancer and normal cells. In present work 3T3 fibroblast and MCF-7 breast cancer epithelial cells were subjected to treatment of CAP with atmospheric discharge with runaway electrons. We have shown that a decrease in the 3T3 and MCF-7 cell viability under the influence of CAP. In addition, there was an increase in lactate dehydrogenase activity and an increase in the amount of NAD(P)H. An increase in the duration and dose of cold plasma exposure to living systems leaded to a change in the metabolic activity of cells. It was noted that after exposure to the culture of normal and cancer cells, there variability in biochemical and metabolic effects (lactate and growth of free form NAD(P)H), which was primarily accompanied shift in the equilibrium between oxidative phosphorylation and glycolysis. Therefore, cold plasma, at the same dose of radiation, has a stimulating effect on 3T3 cells and an apoptotic effect on MCF-7 cells, leading to a reduction in their metabolic activity. This results in a shift in the metabolic balance towards glycolysis for both 3T3 and MCF-7 cell cultures.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differences in metabolite profiling by cold atmospheric plasma in normal and cancer cells.\",\"authors\":\"A B Zinnurova, K P Vorobyov, O V Bakina, E I Senkina, T B Lepekhina, V V Nikolaev, L V Spirina\",\"doi\":\"10.1007/s10863-025-10061-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cold atmospheric plasma (CAP) recently it has been introduced as an innovative therapeutic approach for cancer cell treatment. However the cancer treatment faces questions about the selective anti-cancer capacity of CAP, the distinct molecular responses between cancer and normal cells. In present work 3T3 fibroblast and MCF-7 breast cancer epithelial cells were subjected to treatment of CAP with atmospheric discharge with runaway electrons. We have shown that a decrease in the 3T3 and MCF-7 cell viability under the influence of CAP. In addition, there was an increase in lactate dehydrogenase activity and an increase in the amount of NAD(P)H. An increase in the duration and dose of cold plasma exposure to living systems leaded to a change in the metabolic activity of cells. It was noted that after exposure to the culture of normal and cancer cells, there variability in biochemical and metabolic effects (lactate and growth of free form NAD(P)H), which was primarily accompanied shift in the equilibrium between oxidative phosphorylation and glycolysis. Therefore, cold plasma, at the same dose of radiation, has a stimulating effect on 3T3 cells and an apoptotic effect on MCF-7 cells, leading to a reduction in their metabolic activity. This results in a shift in the metabolic balance towards glycolysis for both 3T3 and MCF-7 cell cultures.</p>\",\"PeriodicalId\":15080,\"journal\":{\"name\":\"Journal of Bioenergetics and Biomembranes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioenergetics and Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10863-025-10061-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-025-10061-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Differences in metabolite profiling by cold atmospheric plasma in normal and cancer cells.
Cold atmospheric plasma (CAP) recently it has been introduced as an innovative therapeutic approach for cancer cell treatment. However the cancer treatment faces questions about the selective anti-cancer capacity of CAP, the distinct molecular responses between cancer and normal cells. In present work 3T3 fibroblast and MCF-7 breast cancer epithelial cells were subjected to treatment of CAP with atmospheric discharge with runaway electrons. We have shown that a decrease in the 3T3 and MCF-7 cell viability under the influence of CAP. In addition, there was an increase in lactate dehydrogenase activity and an increase in the amount of NAD(P)H. An increase in the duration and dose of cold plasma exposure to living systems leaded to a change in the metabolic activity of cells. It was noted that after exposure to the culture of normal and cancer cells, there variability in biochemical and metabolic effects (lactate and growth of free form NAD(P)H), which was primarily accompanied shift in the equilibrium between oxidative phosphorylation and glycolysis. Therefore, cold plasma, at the same dose of radiation, has a stimulating effect on 3T3 cells and an apoptotic effect on MCF-7 cells, leading to a reduction in their metabolic activity. This results in a shift in the metabolic balance towards glycolysis for both 3T3 and MCF-7 cell cultures.
期刊介绍:
The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.