Jiawei Wang, Yujing Liu, Hongyu Li, Tuan P Nguyen, John Lee Soto-Vargas, Rashaun Wilson, Weiwei Wang, TuKiet T Lam, Chi Zhang, Chen Lin, David A Lewis, Jill Glausier, Paul E Holtzheimer, Matthew J Friedman, Kenneth R Williams, Marina R Picciotto, Angus C Nairn, John H Krystal, Ronald S Duman, Keith A Young, Hongyu Zhao, Matthew J Girgenti
{"title":"一种多组学方法暗示了创伤后应激障碍中新的蛋白质失调。","authors":"Jiawei Wang, Yujing Liu, Hongyu Li, Tuan P Nguyen, John Lee Soto-Vargas, Rashaun Wilson, Weiwei Wang, TuKiet T Lam, Chi Zhang, Chen Lin, David A Lewis, Jill Glausier, Paul E Holtzheimer, Matthew J Friedman, Kenneth R Williams, Marina R Picciotto, Angus C Nairn, John H Krystal, Ronald S Duman, Keith A Young, Hongyu Zhao, Matthew J Girgenti","doi":"10.1186/s13073-025-01473-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Post-traumatic stress disorder (PTSD) is a common and disabling psychiatric disorder. PTSD involves multiple brain regions and is often comorbid with other psychiatric disorders, such as major depressive disorder (MDD). Recent genome-wide association studies (GWASs) have identified many PTSD risk loci and transcriptomics studies of postmortem brain have found differentially expressed genes associated with PTSD cases. In this study, we integrated genome-wide measures across modalities to identify convergent molecular effects in the PTSD brain.</p><p><strong>Methods: </strong>We performed tandem mass spectrometry (MS/MS) on a large cohort of donors (N = 66) in two prefrontal cortical areas, dorsolateral prefrontal cortex (DLPFC), and subgenual prefrontal cortex (sgPFC). We also coupled the proteomics data with transcriptomics and microRNA (miRNA) profiling from RNA-seq and small-RNA sequencing, respectively for the same cohort. Additionally, we utilized published GWAS results of multiple psychiatric disorders for integrative analysis.</p><p><strong>Results: </strong>We found differentially expressed proteins and co-expression protein modules disrupted by PTSD. Integrative analysis with transcriptomics and miRNA data from the same cohort pointed to hsa-mir-589 as a regulatory miRNA responsible for dysregulation of neuronal protein networks for PTSD, including the gamma-aminobutyric acid (GABA) vesicular transporter, SLC32A1. In addition, we identified significant enrichment of risk genes for other psychiatric disorders, such as autism spectrum disorder (ASD) and major depressive disorder (MDD) within PTSD protein co-expression modules, suggesting shared molecular pathology.</p><p><strong>Conclusions: </strong>We integrated genome-wide measures of mRNA and miRNA expression and proteomics profiling from PTSD, MDD, and control (CON) brains to identify convergent and divergent molecular processes across genomic modalities. We substantially expand the number of differentially expressed genes and proteins in PTSD and identify downregulation of GABAergic processes in the PTSD proteome. This provides a novel framework for future studies integrating proteomic profiling with transcriptomics and non-coding RNAs in the human brain studies.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"43"},"PeriodicalIF":10.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042318/pdf/","citationCount":"0","resultStr":"{\"title\":\"A multi-omic approach implicates novel protein dysregulation in post-traumatic stress disorder.\",\"authors\":\"Jiawei Wang, Yujing Liu, Hongyu Li, Tuan P Nguyen, John Lee Soto-Vargas, Rashaun Wilson, Weiwei Wang, TuKiet T Lam, Chi Zhang, Chen Lin, David A Lewis, Jill Glausier, Paul E Holtzheimer, Matthew J Friedman, Kenneth R Williams, Marina R Picciotto, Angus C Nairn, John H Krystal, Ronald S Duman, Keith A Young, Hongyu Zhao, Matthew J Girgenti\",\"doi\":\"10.1186/s13073-025-01473-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Post-traumatic stress disorder (PTSD) is a common and disabling psychiatric disorder. PTSD involves multiple brain regions and is often comorbid with other psychiatric disorders, such as major depressive disorder (MDD). Recent genome-wide association studies (GWASs) have identified many PTSD risk loci and transcriptomics studies of postmortem brain have found differentially expressed genes associated with PTSD cases. In this study, we integrated genome-wide measures across modalities to identify convergent molecular effects in the PTSD brain.</p><p><strong>Methods: </strong>We performed tandem mass spectrometry (MS/MS) on a large cohort of donors (N = 66) in two prefrontal cortical areas, dorsolateral prefrontal cortex (DLPFC), and subgenual prefrontal cortex (sgPFC). We also coupled the proteomics data with transcriptomics and microRNA (miRNA) profiling from RNA-seq and small-RNA sequencing, respectively for the same cohort. Additionally, we utilized published GWAS results of multiple psychiatric disorders for integrative analysis.</p><p><strong>Results: </strong>We found differentially expressed proteins and co-expression protein modules disrupted by PTSD. Integrative analysis with transcriptomics and miRNA data from the same cohort pointed to hsa-mir-589 as a regulatory miRNA responsible for dysregulation of neuronal protein networks for PTSD, including the gamma-aminobutyric acid (GABA) vesicular transporter, SLC32A1. In addition, we identified significant enrichment of risk genes for other psychiatric disorders, such as autism spectrum disorder (ASD) and major depressive disorder (MDD) within PTSD protein co-expression modules, suggesting shared molecular pathology.</p><p><strong>Conclusions: </strong>We integrated genome-wide measures of mRNA and miRNA expression and proteomics profiling from PTSD, MDD, and control (CON) brains to identify convergent and divergent molecular processes across genomic modalities. We substantially expand the number of differentially expressed genes and proteins in PTSD and identify downregulation of GABAergic processes in the PTSD proteome. This provides a novel framework for future studies integrating proteomic profiling with transcriptomics and non-coding RNAs in the human brain studies.</p>\",\"PeriodicalId\":12645,\"journal\":{\"name\":\"Genome Medicine\",\"volume\":\"17 1\",\"pages\":\"43\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042318/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13073-025-01473-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01473-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A multi-omic approach implicates novel protein dysregulation in post-traumatic stress disorder.
Background: Post-traumatic stress disorder (PTSD) is a common and disabling psychiatric disorder. PTSD involves multiple brain regions and is often comorbid with other psychiatric disorders, such as major depressive disorder (MDD). Recent genome-wide association studies (GWASs) have identified many PTSD risk loci and transcriptomics studies of postmortem brain have found differentially expressed genes associated with PTSD cases. In this study, we integrated genome-wide measures across modalities to identify convergent molecular effects in the PTSD brain.
Methods: We performed tandem mass spectrometry (MS/MS) on a large cohort of donors (N = 66) in two prefrontal cortical areas, dorsolateral prefrontal cortex (DLPFC), and subgenual prefrontal cortex (sgPFC). We also coupled the proteomics data with transcriptomics and microRNA (miRNA) profiling from RNA-seq and small-RNA sequencing, respectively for the same cohort. Additionally, we utilized published GWAS results of multiple psychiatric disorders for integrative analysis.
Results: We found differentially expressed proteins and co-expression protein modules disrupted by PTSD. Integrative analysis with transcriptomics and miRNA data from the same cohort pointed to hsa-mir-589 as a regulatory miRNA responsible for dysregulation of neuronal protein networks for PTSD, including the gamma-aminobutyric acid (GABA) vesicular transporter, SLC32A1. In addition, we identified significant enrichment of risk genes for other psychiatric disorders, such as autism spectrum disorder (ASD) and major depressive disorder (MDD) within PTSD protein co-expression modules, suggesting shared molecular pathology.
Conclusions: We integrated genome-wide measures of mRNA and miRNA expression and proteomics profiling from PTSD, MDD, and control (CON) brains to identify convergent and divergent molecular processes across genomic modalities. We substantially expand the number of differentially expressed genes and proteins in PTSD and identify downregulation of GABAergic processes in the PTSD proteome. This provides a novel framework for future studies integrating proteomic profiling with transcriptomics and non-coding RNAs in the human brain studies.
期刊介绍:
Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.