一个用于三维癌细胞球体形态和活力评估的深度学习管道。

IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS
Biology Methods and Protocols Pub Date : 2025-04-11 eCollection Date: 2025-01-01 DOI:10.1093/biomethods/bpaf030
Ajay K Mali, Sivasubramanian Murugappan, Jayashree Rajesh Prasad, Syed A M Tofail, Nanasaheb D Thorat
{"title":"一个用于三维癌细胞球体形态和活力评估的深度学习管道。","authors":"Ajay K Mali, Sivasubramanian Murugappan, Jayashree Rajesh Prasad, Syed A M Tofail, Nanasaheb D Thorat","doi":"10.1093/biomethods/bpaf030","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) spheroid models have advanced cancer research by better mimicking the tumour microenvironment compared to traditional <b>two-</b>dimensional cell cultures. However, challenges persist in high-throughput analysis of morphological characteristics and cell viability, as traditional methods like manual fluorescence analysis are labour-intensive and inconsistent. Existing AI-based approaches often address segmentation or classification in isolation, lacking an integrated workflow. We propose a scalable, two-stage deep learning pipeline to address these gaps: (i) a U-Net model for precise detection and segmentation of 3D spheroids from microscopic images, achieving 95% prediction accuracy, and (ii) a CNN Regression Hybrid method for estimating live/dead cell percentages and classifying spheroids, with an <math> <mrow> <msup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> </math> value of 98%. This end-to-end pipeline automates cell viability quantification and generates key morphological parameters for spheroid growth kinetics. By integrating segmentation and analysis, our method addresses environmental variability and morphological characterization challenges, offering a robust tool for drug discovery, toxicity screening, and clinical research. This approach significantly improves efficiency and scalability of 3D spheroid evaluations, paving the way for advancements in cancer therapeutics.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"10 1","pages":"bpaf030"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064216/pdf/","citationCount":"0","resultStr":"{\"title\":\"A deep learning pipeline for morphological and viability assessment of 3D cancer cell spheroids.\",\"authors\":\"Ajay K Mali, Sivasubramanian Murugappan, Jayashree Rajesh Prasad, Syed A M Tofail, Nanasaheb D Thorat\",\"doi\":\"10.1093/biomethods/bpaf030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) spheroid models have advanced cancer research by better mimicking the tumour microenvironment compared to traditional <b>two-</b>dimensional cell cultures. However, challenges persist in high-throughput analysis of morphological characteristics and cell viability, as traditional methods like manual fluorescence analysis are labour-intensive and inconsistent. Existing AI-based approaches often address segmentation or classification in isolation, lacking an integrated workflow. We propose a scalable, two-stage deep learning pipeline to address these gaps: (i) a U-Net model for precise detection and segmentation of 3D spheroids from microscopic images, achieving 95% prediction accuracy, and (ii) a CNN Regression Hybrid method for estimating live/dead cell percentages and classifying spheroids, with an <math> <mrow> <msup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> </math> value of 98%. This end-to-end pipeline automates cell viability quantification and generates key morphological parameters for spheroid growth kinetics. By integrating segmentation and analysis, our method addresses environmental variability and morphological characterization challenges, offering a robust tool for drug discovery, toxicity screening, and clinical research. This approach significantly improves efficiency and scalability of 3D spheroid evaluations, paving the way for advancements in cancer therapeutics.</p>\",\"PeriodicalId\":36528,\"journal\":{\"name\":\"Biology Methods and Protocols\",\"volume\":\"10 1\",\"pages\":\"bpaf030\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064216/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Methods and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomethods/bpaf030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpaf030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

与传统的二维细胞培养相比,三维(3D)球体模型通过更好地模拟肿瘤微环境而推进了癌症研究。然而,形态学特征和细胞活力的高通量分析仍然存在挑战,因为人工荧光分析等传统方法是劳动密集型的,而且不一致。现有的基于人工智能的方法通常孤立地处理分割或分类,缺乏集成的工作流程。我们提出了一个可扩展的两阶段深度学习管道来解决这些差距:(i)用于从微观图像中精确检测和分割3D球体的U-Net模型,达到95%的预测精度;(ii)用于估计活细胞/死细胞百分比和分类球体的CNN回归混合方法,r2值为98%。这端到端管道自动化细胞活力量化和生成关键形态参数的球形生长动力学。通过整合分割和分析,我们的方法解决了环境变化和形态表征的挑战,为药物发现、毒性筛选和临床研究提供了一个强大的工具。这种方法显著提高了三维球体评估的效率和可扩展性,为癌症治疗的进步铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning pipeline for morphological and viability assessment of 3D cancer cell spheroids.

Three-dimensional (3D) spheroid models have advanced cancer research by better mimicking the tumour microenvironment compared to traditional two-dimensional cell cultures. However, challenges persist in high-throughput analysis of morphological characteristics and cell viability, as traditional methods like manual fluorescence analysis are labour-intensive and inconsistent. Existing AI-based approaches often address segmentation or classification in isolation, lacking an integrated workflow. We propose a scalable, two-stage deep learning pipeline to address these gaps: (i) a U-Net model for precise detection and segmentation of 3D spheroids from microscopic images, achieving 95% prediction accuracy, and (ii) a CNN Regression Hybrid method for estimating live/dead cell percentages and classifying spheroids, with an R 2 value of 98%. This end-to-end pipeline automates cell viability quantification and generates key morphological parameters for spheroid growth kinetics. By integrating segmentation and analysis, our method addresses environmental variability and morphological characterization challenges, offering a robust tool for drug discovery, toxicity screening, and clinical research. This approach significantly improves efficiency and scalability of 3D spheroid evaluations, paving the way for advancements in cancer therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信