Erkhembayar Shinebaatar, Junko Morimoto, Rinna Koga, Thanh Nam Nguyen, Yuki Sasaki, Shigenobu Yonemura, Hidetaka Kosako, Koji Yasutomo
{"title":"T细胞中的蛋白酶体功能障碍通过细胞周期破坏和细胞凋亡导致免疫缺陷。","authors":"Erkhembayar Shinebaatar, Junko Morimoto, Rinna Koga, Thanh Nam Nguyen, Yuki Sasaki, Shigenobu Yonemura, Hidetaka Kosako, Koji Yasutomo","doi":"10.1093/intimm/dxaf021","DOIUrl":null,"url":null,"abstract":"<p><p>Proteasomes are essential molecular complexes that regulate intracellular protein homeostasis by selectively degrading ubiquitinated proteins. Genetic mutations in proteasome subunits lead to proteasome-associated autoinflammatory syndromes (PRAAS) characterized by autoinflammation, partial progressive lipodystrophy, and, in certain cases, immunodeficiency. However, the molecular mechanisms by which proteasome dysfunction results in these phenotypes remain unclear. Here, we established a mouse model carrying a mutation in β5i (encoded by Psmb8) along with T-cell-specific β5 (encoded by Psmb5) deficiency (KIKO mice). The KIKO mice presented severe loss of mature T cells in the spleen but not in the thymus, with reduced proteasome activity leading to the accumulation of ubiquitinated proteins. The CD4+ T cells of KIKO mice presented impaired proliferative activity with cell cycle arrest in the G0/G1 phase following T cell receptor (TCR) engagement. T cells from KIKO mice underwent rapid cell death through apoptosis, as treatment of T cells with the caspase inhibitor Z-Val-Ala-Asp(Ome)-fluoromethylketone (Z-VAD-FMK) rescued cell viability. Moreover, proteasome dysfunction induced apoptosis in T cells without affecting either mitochondrial functions or endoplasmic reticulum (ER) stress responses. Thus, our data provide insight into the molecular mechanisms underlying not only immunodeficiency in PRAAS patients but also T-cell deficiency associated with other disorders.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"493-505"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284234/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proteasome dysfunction in T cells causes immunodeficiency via cell cycle disruption and apoptosis.\",\"authors\":\"Erkhembayar Shinebaatar, Junko Morimoto, Rinna Koga, Thanh Nam Nguyen, Yuki Sasaki, Shigenobu Yonemura, Hidetaka Kosako, Koji Yasutomo\",\"doi\":\"10.1093/intimm/dxaf021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteasomes are essential molecular complexes that regulate intracellular protein homeostasis by selectively degrading ubiquitinated proteins. Genetic mutations in proteasome subunits lead to proteasome-associated autoinflammatory syndromes (PRAAS) characterized by autoinflammation, partial progressive lipodystrophy, and, in certain cases, immunodeficiency. However, the molecular mechanisms by which proteasome dysfunction results in these phenotypes remain unclear. Here, we established a mouse model carrying a mutation in β5i (encoded by Psmb8) along with T-cell-specific β5 (encoded by Psmb5) deficiency (KIKO mice). The KIKO mice presented severe loss of mature T cells in the spleen but not in the thymus, with reduced proteasome activity leading to the accumulation of ubiquitinated proteins. The CD4+ T cells of KIKO mice presented impaired proliferative activity with cell cycle arrest in the G0/G1 phase following T cell receptor (TCR) engagement. T cells from KIKO mice underwent rapid cell death through apoptosis, as treatment of T cells with the caspase inhibitor Z-Val-Ala-Asp(Ome)-fluoromethylketone (Z-VAD-FMK) rescued cell viability. Moreover, proteasome dysfunction induced apoptosis in T cells without affecting either mitochondrial functions or endoplasmic reticulum (ER) stress responses. Thus, our data provide insight into the molecular mechanisms underlying not only immunodeficiency in PRAAS patients but also T-cell deficiency associated with other disorders.</p>\",\"PeriodicalId\":13743,\"journal\":{\"name\":\"International immunology\",\"volume\":\" \",\"pages\":\"493-505\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284234/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/intimm/dxaf021\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/intimm/dxaf021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Proteasome dysfunction in T cells causes immunodeficiency via cell cycle disruption and apoptosis.
Proteasomes are essential molecular complexes that regulate intracellular protein homeostasis by selectively degrading ubiquitinated proteins. Genetic mutations in proteasome subunits lead to proteasome-associated autoinflammatory syndromes (PRAAS) characterized by autoinflammation, partial progressive lipodystrophy, and, in certain cases, immunodeficiency. However, the molecular mechanisms by which proteasome dysfunction results in these phenotypes remain unclear. Here, we established a mouse model carrying a mutation in β5i (encoded by Psmb8) along with T-cell-specific β5 (encoded by Psmb5) deficiency (KIKO mice). The KIKO mice presented severe loss of mature T cells in the spleen but not in the thymus, with reduced proteasome activity leading to the accumulation of ubiquitinated proteins. The CD4+ T cells of KIKO mice presented impaired proliferative activity with cell cycle arrest in the G0/G1 phase following T cell receptor (TCR) engagement. T cells from KIKO mice underwent rapid cell death through apoptosis, as treatment of T cells with the caspase inhibitor Z-Val-Ala-Asp(Ome)-fluoromethylketone (Z-VAD-FMK) rescued cell viability. Moreover, proteasome dysfunction induced apoptosis in T cells without affecting either mitochondrial functions or endoplasmic reticulum (ER) stress responses. Thus, our data provide insight into the molecular mechanisms underlying not only immunodeficiency in PRAAS patients but also T-cell deficiency associated with other disorders.
期刊介绍:
International Immunology is an online only (from Jan 2018) journal that publishes basic research and clinical studies from all areas of immunology and includes research conducted in laboratories throughout the world.