大型语言模型在医学检查中检测禁忌选项的高级推理能力。

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS
Yuichiro Yano, Mizuki Ohashi, Taiju Miyagami, Hirotake Mori, Yuji Nishizaki, Hiroyuki Daida, Toshio Naito
{"title":"大型语言模型在医学检查中检测禁忌选项的高级推理能力。","authors":"Yuichiro Yano, Mizuki Ohashi, Taiju Miyagami, Hirotake Mori, Yuji Nishizaki, Hiroyuki Daida, Toshio Naito","doi":"10.2196/68527","DOIUrl":null,"url":null,"abstract":"<p><strong>Unlabelled: </strong>Enhancing clinical reasoning and reducing diagnostic errors are essential in medical practice; OpenAI-o1, with advanced reasoning capabilities, performed better than GPT-4 on 15 Japanese National Medical Licensing Examination questions (accuracy: 100% vs 80%; contraindicated option detection: 87% vs 73%), though findings are preliminary due to the small sample size.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e68527"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12088613/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Advanced Reasoning Capabilities of Large Language Models for Detecting Contraindicated Options in Medical Exams.\",\"authors\":\"Yuichiro Yano, Mizuki Ohashi, Taiju Miyagami, Hirotake Mori, Yuji Nishizaki, Hiroyuki Daida, Toshio Naito\",\"doi\":\"10.2196/68527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Unlabelled: </strong>Enhancing clinical reasoning and reducing diagnostic errors are essential in medical practice; OpenAI-o1, with advanced reasoning capabilities, performed better than GPT-4 on 15 Japanese National Medical Licensing Examination questions (accuracy: 100% vs 80%; contraindicated option detection: 87% vs 73%), though findings are preliminary due to the small sample size.</p>\",\"PeriodicalId\":56334,\"journal\":{\"name\":\"JMIR Medical Informatics\",\"volume\":\"13 \",\"pages\":\"e68527\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12088613/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/68527\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/68527","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

未标记:加强临床推理和减少诊断错误在医疗实践中至关重要;openai - 01具有先进的推理能力,在日本国家医疗执照考试的15个问题上表现优于GPT-4(准确率:100% vs 80%;禁忌症选项检测:87% vs 73%),尽管由于样本量小,结果是初步的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Advanced Reasoning Capabilities of Large Language Models for Detecting Contraindicated Options in Medical Exams.

Unlabelled: Enhancing clinical reasoning and reducing diagnostic errors are essential in medical practice; OpenAI-o1, with advanced reasoning capabilities, performed better than GPT-4 on 15 Japanese National Medical Licensing Examination questions (accuracy: 100% vs 80%; contraindicated option detection: 87% vs 73%), though findings are preliminary due to the small sample size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信