血管感知动脉瘤的多尺度可变形三维关注检测。

Alberto M Ceballos-Arroyo, Hieu T Nguyen, Fangrui Zhu, Shrikanth M Yadav, Jisoo Kim, Lei Qin, Geoffrey Young, Huaizu Jiang
{"title":"血管感知动脉瘤的多尺度可变形三维关注检测。","authors":"Alberto M Ceballos-Arroyo, Hieu T Nguyen, Fangrui Zhu, Shrikanth M Yadav, Jisoo Kim, Lei Qin, Geoffrey Young, Huaizu Jiang","doi":"10.1007/978-3-031-72086-4_71","DOIUrl":null,"url":null,"abstract":"<p><p>Manual detection of intracranial aneurysms (IAs) in computed tomography (CT) scans is a complex, time-consuming task even for expert clinicians, and automating the process is no less challenging. Critical difficulties associated with detecting aneurysms include their small (yet varied) size compared to scans and a high potential for false positive (FP) predictions. To address these issues, we propose a 3D, multi-scale neural architecture that detects aneurysms via a deformable attention mechanism that operates on vessel distance maps derived from vessel segmentations and 3D features extracted from the layers of a convolutional network. Likewise, we reformulate aneurysm segmentation as bounding cuboid prediction using binary cross entropy and three localization losses (location, size, IoU). Given three validation sets comprised of 152/138/38 CT scans and containing 126/101/58 aneurysms, we achieved a Sensitivity of 91.3%/97.0%/74.1% @ FP rates 0.53/0.56/0.87, with Sensitivity around 80% on small aneurysms. Manual inspection of outputs by experts showed our model only tends to miss aneurysms located in unusual locations. Code and model weights are available online.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15005 ","pages":"754-765"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986933/pdf/","citationCount":"0","resultStr":"{\"title\":\"Vessel-aware aneurysm detection using multi-scale deformable 3D attention.\",\"authors\":\"Alberto M Ceballos-Arroyo, Hieu T Nguyen, Fangrui Zhu, Shrikanth M Yadav, Jisoo Kim, Lei Qin, Geoffrey Young, Huaizu Jiang\",\"doi\":\"10.1007/978-3-031-72086-4_71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Manual detection of intracranial aneurysms (IAs) in computed tomography (CT) scans is a complex, time-consuming task even for expert clinicians, and automating the process is no less challenging. Critical difficulties associated with detecting aneurysms include their small (yet varied) size compared to scans and a high potential for false positive (FP) predictions. To address these issues, we propose a 3D, multi-scale neural architecture that detects aneurysms via a deformable attention mechanism that operates on vessel distance maps derived from vessel segmentations and 3D features extracted from the layers of a convolutional network. Likewise, we reformulate aneurysm segmentation as bounding cuboid prediction using binary cross entropy and three localization losses (location, size, IoU). Given three validation sets comprised of 152/138/38 CT scans and containing 126/101/58 aneurysms, we achieved a Sensitivity of 91.3%/97.0%/74.1% @ FP rates 0.53/0.56/0.87, with Sensitivity around 80% on small aneurysms. Manual inspection of outputs by experts showed our model only tends to miss aneurysms located in unusual locations. Code and model weights are available online.</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":\"15005 \",\"pages\":\"754-765\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986933/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-72086-4_71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-72086-4_71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在计算机断层扫描(CT)中手工检测颅内动脉瘤(IAs)是一项复杂且耗时的任务,即使对专业临床医生来说也是如此,而自动化这一过程也同样具有挑战性。与检测动脉瘤相关的关键困难包括与扫描相比,动脉瘤的尺寸较小(但变化不定),并且有很高的假阳性(FP)预测的可能性。为了解决这些问题,我们提出了一种3D、多尺度的神经结构,通过一种可变形的注意力机制来检测动脉瘤,该机制基于血管分割得出的血管距离图和从卷积网络层中提取的3D特征。同样,我们将动脉瘤分割重新定义为使用二值交叉熵和三个定位损失(位置,大小,IoU)的边界长方体预测。在包含152/138/38个CT扫描和126/101/58个动脉瘤的三个验证集中,我们获得了91.3%/97.0%/74.1% @ FP率0.53/0.56/0.87的灵敏度,对小动脉瘤的灵敏度约为80%。专家对输出的人工检查表明,我们的模型只倾向于遗漏位于不寻常位置的动脉瘤。代码和模型权重可以在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vessel-aware aneurysm detection using multi-scale deformable 3D attention.

Manual detection of intracranial aneurysms (IAs) in computed tomography (CT) scans is a complex, time-consuming task even for expert clinicians, and automating the process is no less challenging. Critical difficulties associated with detecting aneurysms include their small (yet varied) size compared to scans and a high potential for false positive (FP) predictions. To address these issues, we propose a 3D, multi-scale neural architecture that detects aneurysms via a deformable attention mechanism that operates on vessel distance maps derived from vessel segmentations and 3D features extracted from the layers of a convolutional network. Likewise, we reformulate aneurysm segmentation as bounding cuboid prediction using binary cross entropy and three localization losses (location, size, IoU). Given three validation sets comprised of 152/138/38 CT scans and containing 126/101/58 aneurysms, we achieved a Sensitivity of 91.3%/97.0%/74.1% @ FP rates 0.53/0.56/0.87, with Sensitivity around 80% on small aneurysms. Manual inspection of outputs by experts showed our model only tends to miss aneurysms located in unusual locations. Code and model weights are available online.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信