Jing Ni, Guangming Zhao, Yuejian Liu, Yi Yang, Zhiqi Song
{"title":"代谢性谷氨酸受体6对黑素细胞形态和黑素小体转移的影响。","authors":"Jing Ni, Guangming Zhao, Yuejian Liu, Yi Yang, Zhiqi Song","doi":"10.1007/s11010-025-05287-y","DOIUrl":null,"url":null,"abstract":"<p><p>The melanosome transfer pathway from melanocytes to keratinocytes has been extensively investigated; however, the underlying molecular mechanisms remain unclear. Therefore, the function of metabotropic glutamate receptor 6 (mGluR6) in the control of melanocyte-to-keratinocyte melanosome transfer, intracellular calcium levels in melanocytes, and the formation of filopodia were explored in this study. Primary melanocytes and keratinocytes were isolated from human foreskin samples. mGluR6 expression was suppressed using lentiviral-mediated short hairpin RNA (shRNA). Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), flow cytometry, and western blot analyses were used to assess filopodia formation, cytoskeletal organization, and melanosome transfer. We found that melanocytes expressed mGluR6 and that mGluR6 knockdown influenced the establishment of dendritic formation, melanocyte filopodia, and microphthalmia-associated transcription factors. Similarly, the efficiency of melanosome transfer from melanocytes to keratinocytes was reduced. According to these findings, melanosome transfer between melanocytes and keratinocytes mostly occurs by filopodia delivery, and mGluR6 directly influences melanosome transfer by altering melanocyte morphology. Comprehensive knowledge of melanosome transfer is essential when developing therapies for skin illnesses characterized by hyperpigmentation or hypopigmentation.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of metabotropic glutamate receptor 6 on cell morphology and melanosome transfer in melanocytes.\",\"authors\":\"Jing Ni, Guangming Zhao, Yuejian Liu, Yi Yang, Zhiqi Song\",\"doi\":\"10.1007/s11010-025-05287-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The melanosome transfer pathway from melanocytes to keratinocytes has been extensively investigated; however, the underlying molecular mechanisms remain unclear. Therefore, the function of metabotropic glutamate receptor 6 (mGluR6) in the control of melanocyte-to-keratinocyte melanosome transfer, intracellular calcium levels in melanocytes, and the formation of filopodia were explored in this study. Primary melanocytes and keratinocytes were isolated from human foreskin samples. mGluR6 expression was suppressed using lentiviral-mediated short hairpin RNA (shRNA). Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), flow cytometry, and western blot analyses were used to assess filopodia formation, cytoskeletal organization, and melanosome transfer. We found that melanocytes expressed mGluR6 and that mGluR6 knockdown influenced the establishment of dendritic formation, melanocyte filopodia, and microphthalmia-associated transcription factors. Similarly, the efficiency of melanosome transfer from melanocytes to keratinocytes was reduced. According to these findings, melanosome transfer between melanocytes and keratinocytes mostly occurs by filopodia delivery, and mGluR6 directly influences melanosome transfer by altering melanocyte morphology. Comprehensive knowledge of melanosome transfer is essential when developing therapies for skin illnesses characterized by hyperpigmentation or hypopigmentation.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-025-05287-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05287-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Effect of metabotropic glutamate receptor 6 on cell morphology and melanosome transfer in melanocytes.
The melanosome transfer pathway from melanocytes to keratinocytes has been extensively investigated; however, the underlying molecular mechanisms remain unclear. Therefore, the function of metabotropic glutamate receptor 6 (mGluR6) in the control of melanocyte-to-keratinocyte melanosome transfer, intracellular calcium levels in melanocytes, and the formation of filopodia were explored in this study. Primary melanocytes and keratinocytes were isolated from human foreskin samples. mGluR6 expression was suppressed using lentiviral-mediated short hairpin RNA (shRNA). Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), flow cytometry, and western blot analyses were used to assess filopodia formation, cytoskeletal organization, and melanosome transfer. We found that melanocytes expressed mGluR6 and that mGluR6 knockdown influenced the establishment of dendritic formation, melanocyte filopodia, and microphthalmia-associated transcription factors. Similarly, the efficiency of melanosome transfer from melanocytes to keratinocytes was reduced. According to these findings, melanosome transfer between melanocytes and keratinocytes mostly occurs by filopodia delivery, and mGluR6 directly influences melanosome transfer by altering melanocyte morphology. Comprehensive knowledge of melanosome transfer is essential when developing therapies for skin illnesses characterized by hyperpigmentation or hypopigmentation.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.