Xinsheng Zhou, Yixin Liu, Xuan Liu, Xu Song, Sijie Li, Peng Chen, Xiaotao Jiang, Yongyin Li
{"title":"新型GPC3 n端双特异性抗体对肿瘤细胞具有双重抗肿瘤作用。","authors":"Xinsheng Zhou, Yixin Liu, Xuan Liu, Xu Song, Sijie Li, Peng Chen, Xiaotao Jiang, Yongyin Li","doi":"10.1007/s10637-025-01530-x","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality worldwide, with poor prognosis and limited treatment options, particularly in advanced stages. Glypican-3 (GPC3) has emerged as a promising therapeutic target, but existing antibodies primarily bind its C-terminal region, where glycosylation can mask epitopes and compromise efficacy. To address this limitation, we focused on the GPC3 N-terminal region, which offers better accessibility and potential for tumor signaling regulation. We developed Pro-12, a high-affinity humanized IgG1 antibody targeting the 25-45 peptide of the GPC3 N-terminus, avoiding glycosylation interference while modulating tumor pathways. Building on Pro-12, we engineered a GPC3/CD3 bispecific antibody (BsAb) using CrossMab and Knob-into-Hole technologies. This BsAb demonstrated dual anti-tumor effects by activating immune cells and inhibiting both the Wnt/β-catenin and PI3K/AKT pathways, achieving outcomes typically requiring tri-specific antibodies. Our findings highlight the GPC3 N-terminal region as a novel therapeutic target and introduce a promising bispecific antibody approach for the treatment of GPC3-positive HCC.</p>","PeriodicalId":14513,"journal":{"name":"Investigational New Drugs","volume":" ","pages":"588-601"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel GPC3 N-terminal bispecific antibody exhibits dual anti-tumor effect against tumor cells.\",\"authors\":\"Xinsheng Zhou, Yixin Liu, Xuan Liu, Xu Song, Sijie Li, Peng Chen, Xiaotao Jiang, Yongyin Li\",\"doi\":\"10.1007/s10637-025-01530-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality worldwide, with poor prognosis and limited treatment options, particularly in advanced stages. Glypican-3 (GPC3) has emerged as a promising therapeutic target, but existing antibodies primarily bind its C-terminal region, where glycosylation can mask epitopes and compromise efficacy. To address this limitation, we focused on the GPC3 N-terminal region, which offers better accessibility and potential for tumor signaling regulation. We developed Pro-12, a high-affinity humanized IgG1 antibody targeting the 25-45 peptide of the GPC3 N-terminus, avoiding glycosylation interference while modulating tumor pathways. Building on Pro-12, we engineered a GPC3/CD3 bispecific antibody (BsAb) using CrossMab and Knob-into-Hole technologies. This BsAb demonstrated dual anti-tumor effects by activating immune cells and inhibiting both the Wnt/β-catenin and PI3K/AKT pathways, achieving outcomes typically requiring tri-specific antibodies. Our findings highlight the GPC3 N-terminal region as a novel therapeutic target and introduce a promising bispecific antibody approach for the treatment of GPC3-positive HCC.</p>\",\"PeriodicalId\":14513,\"journal\":{\"name\":\"Investigational New Drugs\",\"volume\":\" \",\"pages\":\"588-601\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigational New Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10637-025-01530-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigational New Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10637-025-01530-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality worldwide, with poor prognosis and limited treatment options, particularly in advanced stages. Glypican-3 (GPC3) has emerged as a promising therapeutic target, but existing antibodies primarily bind its C-terminal region, where glycosylation can mask epitopes and compromise efficacy. To address this limitation, we focused on the GPC3 N-terminal region, which offers better accessibility and potential for tumor signaling regulation. We developed Pro-12, a high-affinity humanized IgG1 antibody targeting the 25-45 peptide of the GPC3 N-terminus, avoiding glycosylation interference while modulating tumor pathways. Building on Pro-12, we engineered a GPC3/CD3 bispecific antibody (BsAb) using CrossMab and Knob-into-Hole technologies. This BsAb demonstrated dual anti-tumor effects by activating immune cells and inhibiting both the Wnt/β-catenin and PI3K/AKT pathways, achieving outcomes typically requiring tri-specific antibodies. Our findings highlight the GPC3 N-terminal region as a novel therapeutic target and introduce a promising bispecific antibody approach for the treatment of GPC3-positive HCC.
期刊介绍:
The development of new anticancer agents is one of the most rapidly changing aspects of cancer research. Investigational New Drugs provides a forum for the rapid dissemination of information on new anticancer agents. The papers published are of interest to the medical chemist, toxicologist, pharmacist, pharmacologist, biostatistician and clinical oncologist. Investigational New Drugs provides the fastest possible publication of new discoveries and results for the whole community of scientists developing anticancer agents.