HORNET:利用eqtl寻找具有因果证据的基因及其调控网络的工具。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-04-18 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf068
Noah Lorincz-Comi, Yihe Yang, Jayakrishnan Ajayakumar, Makaela Mews, Valentina Bermudez, William Bush, Xiaofeng Zhu
{"title":"HORNET:利用eqtl寻找具有因果证据的基因及其调控网络的工具。","authors":"Noah Lorincz-Comi, Yihe Yang, Jayakrishnan Ajayakumar, Makaela Mews, Valentina Bermudez, William Bush, Xiaofeng Zhu","doi":"10.1093/bioadv/vbaf068","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Nearly two decades of genome-wide association studies (GWAS) have identify thousands of disease-associated genetic variants, but very few genes with evidence of causality. Recent methodological advances demonstrate that Mendelian randomization (MR) using expression quantitative loci (eQTLs) as instrumental variables can detect potential causal genes. However, existing MR approaches are not well suited to handle the complexity of eQTL GWAS data structure and so they are subject to bias, inflation, and incorrect inference.</p><p><strong>Results: </strong>We present a whole-genome regulatory network analysis tool (HORNET), which is a comprehensive set of statistical and computational tools to perform genome-wide searches for causal genes using summary level GWAS data, i.e. robust to biases from multiple sources. Applying HORNET to schizophrenia, eQTL effects in the cerebellum were spread throughout the genome, and in the cortex were more localized to select loci.</p><p><strong>Availability and implementation: </strong>Freely available at https://github.com/noahlorinczcomi/HORNET or Mac, Windows, and Linux users.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf068"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014422/pdf/","citationCount":"0","resultStr":"{\"title\":\"HORNET: tools to find genes with causal evidence and their regulatory networks using eQTLs.\",\"authors\":\"Noah Lorincz-Comi, Yihe Yang, Jayakrishnan Ajayakumar, Makaela Mews, Valentina Bermudez, William Bush, Xiaofeng Zhu\",\"doi\":\"10.1093/bioadv/vbaf068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Nearly two decades of genome-wide association studies (GWAS) have identify thousands of disease-associated genetic variants, but very few genes with evidence of causality. Recent methodological advances demonstrate that Mendelian randomization (MR) using expression quantitative loci (eQTLs) as instrumental variables can detect potential causal genes. However, existing MR approaches are not well suited to handle the complexity of eQTL GWAS data structure and so they are subject to bias, inflation, and incorrect inference.</p><p><strong>Results: </strong>We present a whole-genome regulatory network analysis tool (HORNET), which is a comprehensive set of statistical and computational tools to perform genome-wide searches for causal genes using summary level GWAS data, i.e. robust to biases from multiple sources. Applying HORNET to schizophrenia, eQTL effects in the cerebellum were spread throughout the genome, and in the cortex were more localized to select loci.</p><p><strong>Availability and implementation: </strong>Freely available at https://github.com/noahlorinczcomi/HORNET or Mac, Windows, and Linux users.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf068\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014422/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:近二十年的全基因组关联研究(GWAS)已经确定了数千种与疾病相关的遗传变异,但很少有证据表明它们之间存在因果关系。最近的方法学进展表明,孟德尔随机化(MR)使用表达定量位点(eQTLs)作为工具变量可以检测潜在的因果基因。然而,现有的MR方法不能很好地处理eQTL GWAS数据结构的复杂性,因此它们容易受到偏差、膨胀和错误推断的影响。结果:我们提出了一个全基因组调控网络分析工具(HORNET),这是一套全面的统计和计算工具,可以使用汇总水平的GWAS数据进行全基因组因果基因搜索,即对来自多个来源的偏差具有鲁棒性。将HORNET应用到精神分裂症中,发现小脑中的eQTL效应分布在整个基因组中,而皮质中的eQTL效应则更局限于选择的位点。可用性和实现:可在https://github.com/noahlorinczcomi/HORNET或Mac、Windows和Linux用户免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HORNET: tools to find genes with causal evidence and their regulatory networks using eQTLs.

Motivation: Nearly two decades of genome-wide association studies (GWAS) have identify thousands of disease-associated genetic variants, but very few genes with evidence of causality. Recent methodological advances demonstrate that Mendelian randomization (MR) using expression quantitative loci (eQTLs) as instrumental variables can detect potential causal genes. However, existing MR approaches are not well suited to handle the complexity of eQTL GWAS data structure and so they are subject to bias, inflation, and incorrect inference.

Results: We present a whole-genome regulatory network analysis tool (HORNET), which is a comprehensive set of statistical and computational tools to perform genome-wide searches for causal genes using summary level GWAS data, i.e. robust to biases from multiple sources. Applying HORNET to schizophrenia, eQTL effects in the cerebellum were spread throughout the genome, and in the cortex were more localized to select loci.

Availability and implementation: Freely available at https://github.com/noahlorinczcomi/HORNET or Mac, Windows, and Linux users.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信