Fang Du, Qing Yu, Gang Hu, Chyuan-Sheng Lin, Shirley ShiDu Yan
{"title":"pink1依赖的NFKB信号参与阿尔茨海默病的淀粉样蛋白病理。","authors":"Fang Du, Qing Yu, Gang Hu, Chyuan-Sheng Lin, Shirley ShiDu Yan","doi":"10.1080/15548627.2025.2463322","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction plays a preponderant role in the development of Alzheimer disease (AD). We have demonstrated that activation of PINK1 (PTEN induced kinase 1)-dependent mitophagy ameliorates amyloid pathology, attenuates mitochondrial and synaptic dysfunction, and improves cognitive function. However, the underlying mechanisms remain largely unknown. Using a newly generated PINK1-AD transgenic mouse model and AD neuronal cell lines, we provide substantial evidence supporting the contribution of PINK1-mediated mitochondrial ROS (reactive oxygen species) and NFKB/NF-κB (nuclear factor kappa B) signaling to altering APP (amyloid beta precursor protein) processing and Aβ metabolism. Enhancing neuronal PINK1 is sufficient to suppress Aβ-induced activation of NFKB signal transduction in PINK1-overexpressed Aβ-AD mice and Aβ-producing neurons. Blocking PINK1-mediated NFKB activation inhibits activities of BACE1 (beta-secretase 1) and γ-secretase, which are key enzymes for cleavage of APP processing to produce Aβ. Conversely, loss or knockdown of PINK1 produces excessive ROS, along with increased phosphorylated NFKB1/p50 and RELA/p65 subunits, APP-related BACE1 and γ-secretase, and Aβ accumulation. Importantly, these detrimental effects were robustly blocked by the addition of scavenging PINK1 Aβ-induced mitochondrial ROS, leading to the suppression of NFKB activation, restoration of normal APP processing, and limitation of Aβ accumulation. Thus, our findings highlight a novel mechanism underlying PINK1-mediated modulation of Aβ metabolism <i>via</i> a ROS-NFKB-APP processing nexus. Activation of PINK1 signaling could be a potential therapeutic avenue for the early stages of AD by combining improving mitochondrial quality control with limiting amyloid pathology in AD.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PINK1-dependent NFKB signaling contributes to amyloid pathology in Alzheimer disease.\",\"authors\":\"Fang Du, Qing Yu, Gang Hu, Chyuan-Sheng Lin, Shirley ShiDu Yan\",\"doi\":\"10.1080/15548627.2025.2463322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial dysfunction plays a preponderant role in the development of Alzheimer disease (AD). We have demonstrated that activation of PINK1 (PTEN induced kinase 1)-dependent mitophagy ameliorates amyloid pathology, attenuates mitochondrial and synaptic dysfunction, and improves cognitive function. However, the underlying mechanisms remain largely unknown. Using a newly generated PINK1-AD transgenic mouse model and AD neuronal cell lines, we provide substantial evidence supporting the contribution of PINK1-mediated mitochondrial ROS (reactive oxygen species) and NFKB/NF-κB (nuclear factor kappa B) signaling to altering APP (amyloid beta precursor protein) processing and Aβ metabolism. Enhancing neuronal PINK1 is sufficient to suppress Aβ-induced activation of NFKB signal transduction in PINK1-overexpressed Aβ-AD mice and Aβ-producing neurons. Blocking PINK1-mediated NFKB activation inhibits activities of BACE1 (beta-secretase 1) and γ-secretase, which are key enzymes for cleavage of APP processing to produce Aβ. Conversely, loss or knockdown of PINK1 produces excessive ROS, along with increased phosphorylated NFKB1/p50 and RELA/p65 subunits, APP-related BACE1 and γ-secretase, and Aβ accumulation. Importantly, these detrimental effects were robustly blocked by the addition of scavenging PINK1 Aβ-induced mitochondrial ROS, leading to the suppression of NFKB activation, restoration of normal APP processing, and limitation of Aβ accumulation. Thus, our findings highlight a novel mechanism underlying PINK1-mediated modulation of Aβ metabolism <i>via</i> a ROS-NFKB-APP processing nexus. Activation of PINK1 signaling could be a potential therapeutic avenue for the early stages of AD by combining improving mitochondrial quality control with limiting amyloid pathology in AD.</p>\",\"PeriodicalId\":93893,\"journal\":{\"name\":\"Autophagy\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2025.2463322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2463322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PINK1-dependent NFKB signaling contributes to amyloid pathology in Alzheimer disease.
Mitochondrial dysfunction plays a preponderant role in the development of Alzheimer disease (AD). We have demonstrated that activation of PINK1 (PTEN induced kinase 1)-dependent mitophagy ameliorates amyloid pathology, attenuates mitochondrial and synaptic dysfunction, and improves cognitive function. However, the underlying mechanisms remain largely unknown. Using a newly generated PINK1-AD transgenic mouse model and AD neuronal cell lines, we provide substantial evidence supporting the contribution of PINK1-mediated mitochondrial ROS (reactive oxygen species) and NFKB/NF-κB (nuclear factor kappa B) signaling to altering APP (amyloid beta precursor protein) processing and Aβ metabolism. Enhancing neuronal PINK1 is sufficient to suppress Aβ-induced activation of NFKB signal transduction in PINK1-overexpressed Aβ-AD mice and Aβ-producing neurons. Blocking PINK1-mediated NFKB activation inhibits activities of BACE1 (beta-secretase 1) and γ-secretase, which are key enzymes for cleavage of APP processing to produce Aβ. Conversely, loss or knockdown of PINK1 produces excessive ROS, along with increased phosphorylated NFKB1/p50 and RELA/p65 subunits, APP-related BACE1 and γ-secretase, and Aβ accumulation. Importantly, these detrimental effects were robustly blocked by the addition of scavenging PINK1 Aβ-induced mitochondrial ROS, leading to the suppression of NFKB activation, restoration of normal APP processing, and limitation of Aβ accumulation. Thus, our findings highlight a novel mechanism underlying PINK1-mediated modulation of Aβ metabolism via a ROS-NFKB-APP processing nexus. Activation of PINK1 signaling could be a potential therapeutic avenue for the early stages of AD by combining improving mitochondrial quality control with limiting amyloid pathology in AD.