pink1依赖的NFKB信号参与阿尔茨海默病的淀粉样蛋白病理。

Fang Du, Qing Yu, Gang Hu, Chyuan-Sheng Lin, Shirley ShiDu Yan
{"title":"pink1依赖的NFKB信号参与阿尔茨海默病的淀粉样蛋白病理。","authors":"Fang Du, Qing Yu, Gang Hu, Chyuan-Sheng Lin, Shirley ShiDu Yan","doi":"10.1080/15548627.2025.2463322","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction plays a preponderant role in the development of Alzheimer disease (AD). We have demonstrated that activation of PINK1 (PTEN induced kinase 1)-dependent mitophagy ameliorates amyloid pathology, attenuates mitochondrial and synaptic dysfunction, and improves cognitive function. However, the underlying mechanisms remain largely unknown. Using a newly generated PINK1-AD transgenic mouse model and AD neuronal cell lines, we provide substantial evidence supporting the contribution of PINK1-mediated mitochondrial ROS (reactive oxygen species) and NFKB/NF-κB (nuclear factor kappa B) signaling to altering APP (amyloid beta precursor protein) processing and Aβ metabolism. Enhancing neuronal PINK1 is sufficient to suppress Aβ-induced activation of NFKB signal transduction in PINK1-overexpressed Aβ-AD mice and Aβ-producing neurons. Blocking PINK1-mediated NFKB activation inhibits activities of BACE1 (beta-secretase 1) and γ-secretase, which are key enzymes for cleavage of APP processing to produce Aβ. Conversely, loss or knockdown of PINK1 produces excessive ROS, along with increased phosphorylated NFKB1/p50 and RELA/p65 subunits, APP-related BACE1 and γ-secretase, and Aβ accumulation. Importantly, these detrimental effects were robustly blocked by the addition of scavenging PINK1 Aβ-induced mitochondrial ROS, leading to the suppression of NFKB activation, restoration of normal APP processing, and limitation of Aβ accumulation. Thus, our findings highlight a novel mechanism underlying PINK1-mediated modulation of Aβ metabolism <i>via</i> a ROS-NFKB-APP processing nexus. Activation of PINK1 signaling could be a potential therapeutic avenue for the early stages of AD by combining improving mitochondrial quality control with limiting amyloid pathology in AD.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PINK1-dependent NFKB signaling contributes to amyloid pathology in Alzheimer disease.\",\"authors\":\"Fang Du, Qing Yu, Gang Hu, Chyuan-Sheng Lin, Shirley ShiDu Yan\",\"doi\":\"10.1080/15548627.2025.2463322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial dysfunction plays a preponderant role in the development of Alzheimer disease (AD). We have demonstrated that activation of PINK1 (PTEN induced kinase 1)-dependent mitophagy ameliorates amyloid pathology, attenuates mitochondrial and synaptic dysfunction, and improves cognitive function. However, the underlying mechanisms remain largely unknown. Using a newly generated PINK1-AD transgenic mouse model and AD neuronal cell lines, we provide substantial evidence supporting the contribution of PINK1-mediated mitochondrial ROS (reactive oxygen species) and NFKB/NF-κB (nuclear factor kappa B) signaling to altering APP (amyloid beta precursor protein) processing and Aβ metabolism. Enhancing neuronal PINK1 is sufficient to suppress Aβ-induced activation of NFKB signal transduction in PINK1-overexpressed Aβ-AD mice and Aβ-producing neurons. Blocking PINK1-mediated NFKB activation inhibits activities of BACE1 (beta-secretase 1) and γ-secretase, which are key enzymes for cleavage of APP processing to produce Aβ. Conversely, loss or knockdown of PINK1 produces excessive ROS, along with increased phosphorylated NFKB1/p50 and RELA/p65 subunits, APP-related BACE1 and γ-secretase, and Aβ accumulation. Importantly, these detrimental effects were robustly blocked by the addition of scavenging PINK1 Aβ-induced mitochondrial ROS, leading to the suppression of NFKB activation, restoration of normal APP processing, and limitation of Aβ accumulation. Thus, our findings highlight a novel mechanism underlying PINK1-mediated modulation of Aβ metabolism <i>via</i> a ROS-NFKB-APP processing nexus. Activation of PINK1 signaling could be a potential therapeutic avenue for the early stages of AD by combining improving mitochondrial quality control with limiting amyloid pathology in AD.</p>\",\"PeriodicalId\":93893,\"journal\":{\"name\":\"Autophagy\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2025.2463322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2463322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

线粒体功能障碍在阿尔茨海默病(AD)的发展中起着重要作用。我们已经证明,激活PINK1 (PTEN诱导的激酶1)依赖的线粒体自噬可以改善淀粉样蛋白病理,减轻线粒体和突触功能障碍,并改善认知功能。然而,潜在的机制在很大程度上仍然未知。通过新建立的PINK1-AD转基因小鼠模型和AD神经元细胞系,我们提供了大量证据支持pink1介导的线粒体ROS(活性氧)和NFKB/NF-κB(核因子κB)信号通路对改变APP(淀粉样蛋白β前体蛋白)加工和a - β代谢的贡献。在PINK1过表达的Aβ-AD小鼠和a β产生神经元中,增强神经元PINK1足以抑制a β诱导的NFKB信号转导激活。阻断pink1介导的NFKB激活可抑制BACE1 (β -分泌酶1)和γ-分泌酶的活性,这两种酶是APP加工裂解产生Aβ的关键酶。相反,PINK1的缺失或敲低会产生过多的ROS,同时NFKB1/p50和RELA/p65亚基磷酸化、app相关的BACE1和γ-分泌酶以及Aβ积累增加。重要的是,通过添加清除PINK1 Aβ诱导的线粒体ROS,这些有害影响被强有力地阻断,从而抑制NFKB的激活,恢复正常的APP加工,并限制Aβ的积累。因此,我们的研究结果强调了pink1通过ROS-NFKB-APP加工联系介导的a β代谢调节的新机制。通过结合改善线粒体质量控制和限制阿尔茨海默病的淀粉样蛋白病理,激活PINK1信号可能是早期阿尔茨海默病的潜在治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PINK1-dependent NFKB signaling contributes to amyloid pathology in Alzheimer disease.

Mitochondrial dysfunction plays a preponderant role in the development of Alzheimer disease (AD). We have demonstrated that activation of PINK1 (PTEN induced kinase 1)-dependent mitophagy ameliorates amyloid pathology, attenuates mitochondrial and synaptic dysfunction, and improves cognitive function. However, the underlying mechanisms remain largely unknown. Using a newly generated PINK1-AD transgenic mouse model and AD neuronal cell lines, we provide substantial evidence supporting the contribution of PINK1-mediated mitochondrial ROS (reactive oxygen species) and NFKB/NF-κB (nuclear factor kappa B) signaling to altering APP (amyloid beta precursor protein) processing and Aβ metabolism. Enhancing neuronal PINK1 is sufficient to suppress Aβ-induced activation of NFKB signal transduction in PINK1-overexpressed Aβ-AD mice and Aβ-producing neurons. Blocking PINK1-mediated NFKB activation inhibits activities of BACE1 (beta-secretase 1) and γ-secretase, which are key enzymes for cleavage of APP processing to produce Aβ. Conversely, loss or knockdown of PINK1 produces excessive ROS, along with increased phosphorylated NFKB1/p50 and RELA/p65 subunits, APP-related BACE1 and γ-secretase, and Aβ accumulation. Importantly, these detrimental effects were robustly blocked by the addition of scavenging PINK1 Aβ-induced mitochondrial ROS, leading to the suppression of NFKB activation, restoration of normal APP processing, and limitation of Aβ accumulation. Thus, our findings highlight a novel mechanism underlying PINK1-mediated modulation of Aβ metabolism via a ROS-NFKB-APP processing nexus. Activation of PINK1 signaling could be a potential therapeutic avenue for the early stages of AD by combining improving mitochondrial quality control with limiting amyloid pathology in AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信