新生多细胞谱系的进化动力学。

IF 3.8 1区 生物学 Q1 BIOLOGY
Guilhem Doulcier, Philippe Remigi, Daniel Rexin, Paul B Rainey
{"title":"新生多细胞谱系的进化动力学。","authors":"Guilhem Doulcier, Philippe Remigi, Daniel Rexin, Paul B Rainey","doi":"10.1098/rspb.2024.1195","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of multicellular organisms involves the emergence of cellular collectives that eventually become units of selection in their own right. The process can be facilitated by ecological conditions that impose heritable variance in fitness on nascent collectives, with long-term persistence depending on the capacity of competing lineages to transition reliably between soma- and germ-like stages of proto-life cycles. Prior work with experimental bacterial populations showed rapid increases in collective-level fitness, with the capacity to switch between life cycle phases being a particular focus of selection. Here, we report experiments in which the most successful lineage from the earlier study was further propagated for 10 life cycle generations under regimes that required different investments in the soma-like phase. To explore the adaptive significance of switching, a control was included in which reliable transitioning between life cycle phases was abolished. The switch proved central to the maintenance of fitness. Moreover, in a non-switch treatment, where solutions to producing a robust and enduring soma-phase were required, the evolution of <i>mutL</i>-dependent switching emerged de novo. A newly developed computational pipeline (colgen) was used to display the moment-by-moment evolutionary dynamics of lineages, providing rare visual evidence of the roles of chance, history and selection. Colgen, underpinned by a Bayesian model, was further used to propagate hundreds of mutations back through temporal genealogical series, predict lineages and time points corresponding to changes of likely adaptive significance, and in one instance, via a combination of targeted sequencing, genetics and analyses of fitness consequences, the adaptive significance of a single mutation was demonstrated. Overall, our results shed light on the mechanisms by which collectives adapt to new selective challenges and demonstrate the value of genealogy-centred approaches for investigating the dynamics of lineage-level selection.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2045","pages":"20241195"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040459/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evolutionary dynamics of nascent multicellular lineages.\",\"authors\":\"Guilhem Doulcier, Philippe Remigi, Daniel Rexin, Paul B Rainey\",\"doi\":\"10.1098/rspb.2024.1195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The evolution of multicellular organisms involves the emergence of cellular collectives that eventually become units of selection in their own right. The process can be facilitated by ecological conditions that impose heritable variance in fitness on nascent collectives, with long-term persistence depending on the capacity of competing lineages to transition reliably between soma- and germ-like stages of proto-life cycles. Prior work with experimental bacterial populations showed rapid increases in collective-level fitness, with the capacity to switch between life cycle phases being a particular focus of selection. Here, we report experiments in which the most successful lineage from the earlier study was further propagated for 10 life cycle generations under regimes that required different investments in the soma-like phase. To explore the adaptive significance of switching, a control was included in which reliable transitioning between life cycle phases was abolished. The switch proved central to the maintenance of fitness. Moreover, in a non-switch treatment, where solutions to producing a robust and enduring soma-phase were required, the evolution of <i>mutL</i>-dependent switching emerged de novo. A newly developed computational pipeline (colgen) was used to display the moment-by-moment evolutionary dynamics of lineages, providing rare visual evidence of the roles of chance, history and selection. Colgen, underpinned by a Bayesian model, was further used to propagate hundreds of mutations back through temporal genealogical series, predict lineages and time points corresponding to changes of likely adaptive significance, and in one instance, via a combination of targeted sequencing, genetics and analyses of fitness consequences, the adaptive significance of a single mutation was demonstrated. Overall, our results shed light on the mechanisms by which collectives adapt to new selective challenges and demonstrate the value of genealogy-centred approaches for investigating the dynamics of lineage-level selection.</p>\",\"PeriodicalId\":20589,\"journal\":{\"name\":\"Proceedings of the Royal Society B: Biological Sciences\",\"volume\":\"292 2045\",\"pages\":\"20241195\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040459/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rspb.2024.1195\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.1195","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多细胞生物的进化涉及到细胞集体的出现,这些细胞集体最终成为它们自己的选择单位。这一过程可以通过生态条件来促进,生态条件将适应性的遗传变异强加于新生集体,而长期的持久性取决于竞争谱系在原始生命周期的躯体和细菌阶段之间可靠过渡的能力。先前对实验细菌群体的研究表明,集体水平的适应度迅速增加,在生命周期阶段之间切换的能力是选择的一个特别重点。在这里,我们报告的实验中,早期研究中最成功的谱系在需要在体细胞样阶段进行不同投资的制度下进一步繁殖了10个生命周期代。为了探索切换的自适应意义,我们引入了一个消除生命周期阶段之间可靠转换的控制。事实证明,这种转变对保持健康至关重要。此外,在非开关处理中,需要产生稳健和持久的体细胞阶段的解决方案,多依赖开关的进化从头开始。一种新开发的计算管道(colgen)被用于显示谱系中每一刻的进化动态,为机会、历史和选择的作用提供了罕见的视觉证据。在贝叶斯模型的支持下,Colgen进一步被用于通过时间谱系序列传播数百个突变,预测谱系和时间点对应于可能的适应性意义变化,并在一个实例中,通过结合靶向测序,遗传学和适应性结果分析,证明了单个突变的适应性意义。总的来说,我们的结果揭示了集体适应新的选择挑战的机制,并证明了以系谱为中心的方法在研究系谱水平选择动力学方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary dynamics of nascent multicellular lineages.

The evolution of multicellular organisms involves the emergence of cellular collectives that eventually become units of selection in their own right. The process can be facilitated by ecological conditions that impose heritable variance in fitness on nascent collectives, with long-term persistence depending on the capacity of competing lineages to transition reliably between soma- and germ-like stages of proto-life cycles. Prior work with experimental bacterial populations showed rapid increases in collective-level fitness, with the capacity to switch between life cycle phases being a particular focus of selection. Here, we report experiments in which the most successful lineage from the earlier study was further propagated for 10 life cycle generations under regimes that required different investments in the soma-like phase. To explore the adaptive significance of switching, a control was included in which reliable transitioning between life cycle phases was abolished. The switch proved central to the maintenance of fitness. Moreover, in a non-switch treatment, where solutions to producing a robust and enduring soma-phase were required, the evolution of mutL-dependent switching emerged de novo. A newly developed computational pipeline (colgen) was used to display the moment-by-moment evolutionary dynamics of lineages, providing rare visual evidence of the roles of chance, history and selection. Colgen, underpinned by a Bayesian model, was further used to propagate hundreds of mutations back through temporal genealogical series, predict lineages and time points corresponding to changes of likely adaptive significance, and in one instance, via a combination of targeted sequencing, genetics and analyses of fitness consequences, the adaptive significance of a single mutation was demonstrated. Overall, our results shed light on the mechanisms by which collectives adapt to new selective challenges and demonstrate the value of genealogy-centred approaches for investigating the dynamics of lineage-level selection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
4.30%
发文量
502
审稿时长
1 months
期刊介绍: Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信