Gourango Talukdar, Lisa Duvick, Praseuth Yang, Brennon O'Callaghan, Gavin J Fuchs, Marija Cvetanovic, Harry T Orr
{"title":"在EAE小鼠模型中,ATAXIN1中的聚谷氨酰胺扩增导致功能丧失,从而加剧多发性硬化症的严重程度。","authors":"Gourango Talukdar, Lisa Duvick, Praseuth Yang, Brennon O'Callaghan, Gavin J Fuchs, Marija Cvetanovic, Harry T Orr","doi":"10.1186/s12974-025-03450-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Ataxin-1 (ATXN1) is a protein in which expansion of its polyglutamine tract causes the neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1) via a gain-of-function. Wild type ATXN1 was recently shown to have a protective role in regulating severity of experimental autoimmune encephalomyelitis (EAE), a well-established mouse model for Multiple sclerosis (MS). This study further investigates the role of ATXN1 with an expanded polyglutamine tract in the context of MS using an EAE mouse model.</p><p><strong>Methods: </strong>Hemizygous Atxn1 (Atxn1<sup>2Q/-</sup>) mice or f-ATXN1<sup>146Q/2Q</sup>, heterozygous mice that have one copy of the endogenous mouse gene replaced with a polyQ expanded pathogenic human ATXN1 gene, were injected with myelin oligodendrocytes glycoprotein (MOG<sub>35 - 55</sub>) peptide to induce EAE. Immunohistochemical and biochemical approaches were used to analyze the degree of demyelination, cell loss, axonal degeneration as well as detecting the activated immune cells and inflammatory cytokines upon EAE induction in Atxn1<sup>2Q/-</sup> and f-ATXN1<sup>146Q/2Q</sup> mice.</p><p><strong>Results: </strong>Our findings reveal that a loss-of-function of wild type Atxn1 in Atxn1<sup>2Q/-</sup> and f-ATXN1<sup>146Q/2Q</sup> mice significantly exacerbates the EAE symptoms, leading to increased demyelination, oligodendrocytes loss, heightened axon degeneration, and greater clinical disability in affected mice. Importantly, the data reveals that neurotoxic astrocytes are activated at acute stage of disease (PID-14) and at the chronic stage of disease (PID-30) neurotoxic astrocytes no longer show signs of activation. The data also demonstrated enhanced infiltration of immune cells into the lesions of mutant mice.</p><p><strong>Discussion: </strong>These results indicate that ATXN1 plays a protective role in modulating immune responses and maintaining neural integrity during MS. Importantly, expansion of the polyQ tract in ATXN1 results in a loss-of-function in ATXN1's ability to dampen the immune response. Understanding the functional role of ATXN1 in MS pathogenesis may open new avenues for therapeutic strategies aimed at mitigating disease progression.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"127"},"PeriodicalIF":9.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044863/pdf/","citationCount":"0","resultStr":"{\"title\":\"An expanded polyglutamine in ATAXIN1 results in a loss-of-function that exacerbates severity of Multiple Sclerosis in an EAE mouse model.\",\"authors\":\"Gourango Talukdar, Lisa Duvick, Praseuth Yang, Brennon O'Callaghan, Gavin J Fuchs, Marija Cvetanovic, Harry T Orr\",\"doi\":\"10.1186/s12974-025-03450-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objectives: </strong>Ataxin-1 (ATXN1) is a protein in which expansion of its polyglutamine tract causes the neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1) via a gain-of-function. Wild type ATXN1 was recently shown to have a protective role in regulating severity of experimental autoimmune encephalomyelitis (EAE), a well-established mouse model for Multiple sclerosis (MS). This study further investigates the role of ATXN1 with an expanded polyglutamine tract in the context of MS using an EAE mouse model.</p><p><strong>Methods: </strong>Hemizygous Atxn1 (Atxn1<sup>2Q/-</sup>) mice or f-ATXN1<sup>146Q/2Q</sup>, heterozygous mice that have one copy of the endogenous mouse gene replaced with a polyQ expanded pathogenic human ATXN1 gene, were injected with myelin oligodendrocytes glycoprotein (MOG<sub>35 - 55</sub>) peptide to induce EAE. Immunohistochemical and biochemical approaches were used to analyze the degree of demyelination, cell loss, axonal degeneration as well as detecting the activated immune cells and inflammatory cytokines upon EAE induction in Atxn1<sup>2Q/-</sup> and f-ATXN1<sup>146Q/2Q</sup> mice.</p><p><strong>Results: </strong>Our findings reveal that a loss-of-function of wild type Atxn1 in Atxn1<sup>2Q/-</sup> and f-ATXN1<sup>146Q/2Q</sup> mice significantly exacerbates the EAE symptoms, leading to increased demyelination, oligodendrocytes loss, heightened axon degeneration, and greater clinical disability in affected mice. Importantly, the data reveals that neurotoxic astrocytes are activated at acute stage of disease (PID-14) and at the chronic stage of disease (PID-30) neurotoxic astrocytes no longer show signs of activation. The data also demonstrated enhanced infiltration of immune cells into the lesions of mutant mice.</p><p><strong>Discussion: </strong>These results indicate that ATXN1 plays a protective role in modulating immune responses and maintaining neural integrity during MS. Importantly, expansion of the polyQ tract in ATXN1 results in a loss-of-function in ATXN1's ability to dampen the immune response. Understanding the functional role of ATXN1 in MS pathogenesis may open new avenues for therapeutic strategies aimed at mitigating disease progression.</p>\",\"PeriodicalId\":16577,\"journal\":{\"name\":\"Journal of Neuroinflammation\",\"volume\":\"22 1\",\"pages\":\"127\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044863/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroinflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12974-025-03450-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03450-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
An expanded polyglutamine in ATAXIN1 results in a loss-of-function that exacerbates severity of Multiple Sclerosis in an EAE mouse model.
Background and objectives: Ataxin-1 (ATXN1) is a protein in which expansion of its polyglutamine tract causes the neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1) via a gain-of-function. Wild type ATXN1 was recently shown to have a protective role in regulating severity of experimental autoimmune encephalomyelitis (EAE), a well-established mouse model for Multiple sclerosis (MS). This study further investigates the role of ATXN1 with an expanded polyglutamine tract in the context of MS using an EAE mouse model.
Methods: Hemizygous Atxn1 (Atxn12Q/-) mice or f-ATXN1146Q/2Q, heterozygous mice that have one copy of the endogenous mouse gene replaced with a polyQ expanded pathogenic human ATXN1 gene, were injected with myelin oligodendrocytes glycoprotein (MOG35 - 55) peptide to induce EAE. Immunohistochemical and biochemical approaches were used to analyze the degree of demyelination, cell loss, axonal degeneration as well as detecting the activated immune cells and inflammatory cytokines upon EAE induction in Atxn12Q/- and f-ATXN1146Q/2Q mice.
Results: Our findings reveal that a loss-of-function of wild type Atxn1 in Atxn12Q/- and f-ATXN1146Q/2Q mice significantly exacerbates the EAE symptoms, leading to increased demyelination, oligodendrocytes loss, heightened axon degeneration, and greater clinical disability in affected mice. Importantly, the data reveals that neurotoxic astrocytes are activated at acute stage of disease (PID-14) and at the chronic stage of disease (PID-30) neurotoxic astrocytes no longer show signs of activation. The data also demonstrated enhanced infiltration of immune cells into the lesions of mutant mice.
Discussion: These results indicate that ATXN1 plays a protective role in modulating immune responses and maintaining neural integrity during MS. Importantly, expansion of the polyQ tract in ATXN1 results in a loss-of-function in ATXN1's ability to dampen the immune response. Understanding the functional role of ATXN1 in MS pathogenesis may open new avenues for therapeutic strategies aimed at mitigating disease progression.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.