PKAN:利用Kolmogorov-Arnold网络和多模态学习与高级语言模型进行肽预测。

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Li Wang, Xiangzheng Fu, Xiucai Ye, Tetsuya Sakurai, Xiangxiang Zeng, Yiping Liu
{"title":"PKAN:利用Kolmogorov-Arnold网络和多模态学习与高级语言模型进行肽预测。","authors":"Li Wang, Xiangzheng Fu, Xiucai Ye, Tetsuya Sakurai, Xiangxiang Zeng, Yiping Liu","doi":"10.1109/JBHI.2025.3561846","DOIUrl":null,"url":null,"abstract":"<p><p>Peptides can offer highly specific biological activities, serving as essential mediators of intercellular signaling, which are critical for advancing precision medicine and drug development. Their primary structure can be depicted either as an amino acid sequence or as a chemical molecules consisting of atoms and chemical bonds. Large language models (LLMs) hold the potential to thoroughly elucidate the intricate intrinsic properties of peptides. Here we present the Peptide Kolmogorov-Arnold Network (PKAN), a framework leveraging multi-modal representations inspired by advanced language models for peptide activity and functionality prediction. Comparative experiments across tasks show that PKAN outperforms state-of-the-art models while maintaining a streamlined design with superior predictive capabilities. The multi-modal feature importance scoring, anchored in global structures and the significant marginal impacts of derived features on the model, coupled with intricate symbolic regression of specific activation functions, further demonstrates the robustness and precision of the PKAN framework in identifying and elucidating key determinants of peptide functionality. This work provides scientific evidence for investigating the complex mechanisms of peptide materials and supports the progression of peptide language paradigms in biology.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PKAN: Leveraging Kolmogorov-Arnold Networks and Multi-modal Learning for Peptide Prediction with Advanced Language Models.\",\"authors\":\"Li Wang, Xiangzheng Fu, Xiucai Ye, Tetsuya Sakurai, Xiangxiang Zeng, Yiping Liu\",\"doi\":\"10.1109/JBHI.2025.3561846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peptides can offer highly specific biological activities, serving as essential mediators of intercellular signaling, which are critical for advancing precision medicine and drug development. Their primary structure can be depicted either as an amino acid sequence or as a chemical molecules consisting of atoms and chemical bonds. Large language models (LLMs) hold the potential to thoroughly elucidate the intricate intrinsic properties of peptides. Here we present the Peptide Kolmogorov-Arnold Network (PKAN), a framework leveraging multi-modal representations inspired by advanced language models for peptide activity and functionality prediction. Comparative experiments across tasks show that PKAN outperforms state-of-the-art models while maintaining a streamlined design with superior predictive capabilities. The multi-modal feature importance scoring, anchored in global structures and the significant marginal impacts of derived features on the model, coupled with intricate symbolic regression of specific activation functions, further demonstrates the robustness and precision of the PKAN framework in identifying and elucidating key determinants of peptide functionality. This work provides scientific evidence for investigating the complex mechanisms of peptide materials and supports the progression of peptide language paradigms in biology.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2025.3561846\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3561846","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

多肽具有高度特异性的生物活性,是细胞间信号转导的重要介质,对推进精准医疗和药物开发具有重要意义。它们的一级结构既可以描述为氨基酸序列,也可以描述为由原子和化学键组成的化学分子。大型语言模型(llm)具有彻底阐明肽复杂内在特性的潜力。在这里,我们提出了肽Kolmogorov-Arnold网络(PKAN),这是一个利用多模态表示的框架,受到肽活性和功能预测的高级语言模型的启发。跨任务的比较实验表明,PKAN在保持具有优越预测能力的流线型设计的同时,优于最先进的模型。基于全局结构和衍生特征对模型的显著边际影响的多模态特征重要性评分,加上特定激活函数的复杂符号回归,进一步证明了PKAN框架在识别和阐明肽功能关键决定因素方面的鲁棒性和准确性。这项工作为研究多肽材料的复杂机制提供了科学依据,并支持了生物学中多肽语言范式的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PKAN: Leveraging Kolmogorov-Arnold Networks and Multi-modal Learning for Peptide Prediction with Advanced Language Models.

Peptides can offer highly specific biological activities, serving as essential mediators of intercellular signaling, which are critical for advancing precision medicine and drug development. Their primary structure can be depicted either as an amino acid sequence or as a chemical molecules consisting of atoms and chemical bonds. Large language models (LLMs) hold the potential to thoroughly elucidate the intricate intrinsic properties of peptides. Here we present the Peptide Kolmogorov-Arnold Network (PKAN), a framework leveraging multi-modal representations inspired by advanced language models for peptide activity and functionality prediction. Comparative experiments across tasks show that PKAN outperforms state-of-the-art models while maintaining a streamlined design with superior predictive capabilities. The multi-modal feature importance scoring, anchored in global structures and the significant marginal impacts of derived features on the model, coupled with intricate symbolic regression of specific activation functions, further demonstrates the robustness and precision of the PKAN framework in identifying and elucidating key determinants of peptide functionality. This work provides scientific evidence for investigating the complex mechanisms of peptide materials and supports the progression of peptide language paradigms in biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信