Li Wang, Xiangzheng Fu, Xiucai Ye, Tetsuya Sakurai, Xiangxiang Zeng, Yiping Liu
{"title":"PKAN:利用Kolmogorov-Arnold网络和多模态学习与高级语言模型进行肽预测。","authors":"Li Wang, Xiangzheng Fu, Xiucai Ye, Tetsuya Sakurai, Xiangxiang Zeng, Yiping Liu","doi":"10.1109/JBHI.2025.3561846","DOIUrl":null,"url":null,"abstract":"<p><p>Peptides can offer highly specific biological activities, serving as essential mediators of intercellular signaling, which are critical for advancing precision medicine and drug development. Their primary structure can be depicted either as an amino acid sequence or as a chemical molecules consisting of atoms and chemical bonds. Large language models (LLMs) hold the potential to thoroughly elucidate the intricate intrinsic properties of peptides. Here we present the Peptide Kolmogorov-Arnold Network (PKAN), a framework leveraging multi-modal representations inspired by advanced language models for peptide activity and functionality prediction. Comparative experiments across tasks show that PKAN outperforms state-of-the-art models while maintaining a streamlined design with superior predictive capabilities. The multi-modal feature importance scoring, anchored in global structures and the significant marginal impacts of derived features on the model, coupled with intricate symbolic regression of specific activation functions, further demonstrates the robustness and precision of the PKAN framework in identifying and elucidating key determinants of peptide functionality. This work provides scientific evidence for investigating the complex mechanisms of peptide materials and supports the progression of peptide language paradigms in biology.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PKAN: Leveraging Kolmogorov-Arnold Networks and Multi-modal Learning for Peptide Prediction with Advanced Language Models.\",\"authors\":\"Li Wang, Xiangzheng Fu, Xiucai Ye, Tetsuya Sakurai, Xiangxiang Zeng, Yiping Liu\",\"doi\":\"10.1109/JBHI.2025.3561846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peptides can offer highly specific biological activities, serving as essential mediators of intercellular signaling, which are critical for advancing precision medicine and drug development. Their primary structure can be depicted either as an amino acid sequence or as a chemical molecules consisting of atoms and chemical bonds. Large language models (LLMs) hold the potential to thoroughly elucidate the intricate intrinsic properties of peptides. Here we present the Peptide Kolmogorov-Arnold Network (PKAN), a framework leveraging multi-modal representations inspired by advanced language models for peptide activity and functionality prediction. Comparative experiments across tasks show that PKAN outperforms state-of-the-art models while maintaining a streamlined design with superior predictive capabilities. The multi-modal feature importance scoring, anchored in global structures and the significant marginal impacts of derived features on the model, coupled with intricate symbolic regression of specific activation functions, further demonstrates the robustness and precision of the PKAN framework in identifying and elucidating key determinants of peptide functionality. This work provides scientific evidence for investigating the complex mechanisms of peptide materials and supports the progression of peptide language paradigms in biology.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2025.3561846\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3561846","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
PKAN: Leveraging Kolmogorov-Arnold Networks and Multi-modal Learning for Peptide Prediction with Advanced Language Models.
Peptides can offer highly specific biological activities, serving as essential mediators of intercellular signaling, which are critical for advancing precision medicine and drug development. Their primary structure can be depicted either as an amino acid sequence or as a chemical molecules consisting of atoms and chemical bonds. Large language models (LLMs) hold the potential to thoroughly elucidate the intricate intrinsic properties of peptides. Here we present the Peptide Kolmogorov-Arnold Network (PKAN), a framework leveraging multi-modal representations inspired by advanced language models for peptide activity and functionality prediction. Comparative experiments across tasks show that PKAN outperforms state-of-the-art models while maintaining a streamlined design with superior predictive capabilities. The multi-modal feature importance scoring, anchored in global structures and the significant marginal impacts of derived features on the model, coupled with intricate symbolic regression of specific activation functions, further demonstrates the robustness and precision of the PKAN framework in identifying and elucidating key determinants of peptide functionality. This work provides scientific evidence for investigating the complex mechanisms of peptide materials and supports the progression of peptide language paradigms in biology.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.