Keerthikka Ravi, Nicole R Falkowski, Gary B Huffnagle
{"title":"基因组学和转录组学研究脊椎动物宿主特异性约氏乳杆菌在胃肠道中的适应性。","authors":"Keerthikka Ravi, Nicole R Falkowski, Gary B Huffnagle","doi":"10.1128/msphere.00052-25","DOIUrl":null,"url":null,"abstract":"<p><p>We conducted a comparative genomic analysis of <i>Lactobacillus johnsonii</i> strains isolated from the gastrointestinal tract of diverse vertebrate hosts to explore the genetic basis of host specificity. We then utilized transcriptomics analysis to investigate the expression profile of identified rodent-specific genes in mouse isolate MR1 during <i>in vitro</i> and <i>in vivo</i> growth conditions. There was significant heterogeneity among strains, in both genome sequence and content, with phylogenetic clustering of strains into distinct clades associated with rodent or avian sources. There were not sufficient genomes to identify whether porcine isolates formed their own genetic clade. However, human isolates did not form a distinct clade. Functional enrichment analysis revealed significant enrichment of several genes, including surface proteins and accessory secretory pathway-related genes, as well as tyrosine decarboxylase genes in rodent isolates compared to avian isolates, including in mouse isolate MR1. A total of 40 genes were identified as rodent-associated, and all were transcriptionally active in <i>L. johnsonii</i> MR1. The global transcriptomic analysis of <i>L. johnsonii</i> MR1 was done using cells grown anaerobically, at 37˚C, under both the late-exponential phase and stationary phase, as well as during <i>in vivo</i> growth in the cecum of mono-colonized germ-free mice. Several of these genes were uniquely regulated during late exponential vs stationary phase growth and <i>in vivo</i> colonization in mice, highlighting their potential role in nutrient adaptation and host-microbe interactions.IMPORTANCE<i>Lactobacillus johnsonii</i> is a well-known probiotic species with health-beneficial properties, including host immunomodulation and pathogen inhibition. Its growing relevance in the medical industry highlights the need to understand its biology, particularly how it adapts to different host environments. In bacteria, niche adaptation is often accompanied by the loss or gain of coding sequences along with changes in the genome size. In this study, we explored the genetic diversity of <i>L. johnsonii</i> strains from the gastrointestinal tracts of various vertebrates such as rodents, birds, swine, and humans. We found associations between genome content and host species of origin and could conceptually demonstrate that these genes are being differentially transcribed under varying conditions. Several functions were associated with specific host groups, suggesting that <i>L. johnsonii</i> strains have adapted to their hosts over time.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0005225"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic and transcriptomic insights into vertebrate host-specific <i>Lactobacillus johnsonii</i> adaptation in the gastrointestinal tract.\",\"authors\":\"Keerthikka Ravi, Nicole R Falkowski, Gary B Huffnagle\",\"doi\":\"10.1128/msphere.00052-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We conducted a comparative genomic analysis of <i>Lactobacillus johnsonii</i> strains isolated from the gastrointestinal tract of diverse vertebrate hosts to explore the genetic basis of host specificity. We then utilized transcriptomics analysis to investigate the expression profile of identified rodent-specific genes in mouse isolate MR1 during <i>in vitro</i> and <i>in vivo</i> growth conditions. There was significant heterogeneity among strains, in both genome sequence and content, with phylogenetic clustering of strains into distinct clades associated with rodent or avian sources. There were not sufficient genomes to identify whether porcine isolates formed their own genetic clade. However, human isolates did not form a distinct clade. Functional enrichment analysis revealed significant enrichment of several genes, including surface proteins and accessory secretory pathway-related genes, as well as tyrosine decarboxylase genes in rodent isolates compared to avian isolates, including in mouse isolate MR1. A total of 40 genes were identified as rodent-associated, and all were transcriptionally active in <i>L. johnsonii</i> MR1. The global transcriptomic analysis of <i>L. johnsonii</i> MR1 was done using cells grown anaerobically, at 37˚C, under both the late-exponential phase and stationary phase, as well as during <i>in vivo</i> growth in the cecum of mono-colonized germ-free mice. Several of these genes were uniquely regulated during late exponential vs stationary phase growth and <i>in vivo</i> colonization in mice, highlighting their potential role in nutrient adaptation and host-microbe interactions.IMPORTANCE<i>Lactobacillus johnsonii</i> is a well-known probiotic species with health-beneficial properties, including host immunomodulation and pathogen inhibition. Its growing relevance in the medical industry highlights the need to understand its biology, particularly how it adapts to different host environments. In bacteria, niche adaptation is often accompanied by the loss or gain of coding sequences along with changes in the genome size. In this study, we explored the genetic diversity of <i>L. johnsonii</i> strains from the gastrointestinal tracts of various vertebrates such as rodents, birds, swine, and humans. We found associations between genome content and host species of origin and could conceptually demonstrate that these genes are being differentially transcribed under varying conditions. Several functions were associated with specific host groups, suggesting that <i>L. johnsonii</i> strains have adapted to their hosts over time.</p>\",\"PeriodicalId\":19052,\"journal\":{\"name\":\"mSphere\",\"volume\":\" \",\"pages\":\"e0005225\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSphere\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msphere.00052-25\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00052-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Genomic and transcriptomic insights into vertebrate host-specific Lactobacillus johnsonii adaptation in the gastrointestinal tract.
We conducted a comparative genomic analysis of Lactobacillus johnsonii strains isolated from the gastrointestinal tract of diverse vertebrate hosts to explore the genetic basis of host specificity. We then utilized transcriptomics analysis to investigate the expression profile of identified rodent-specific genes in mouse isolate MR1 during in vitro and in vivo growth conditions. There was significant heterogeneity among strains, in both genome sequence and content, with phylogenetic clustering of strains into distinct clades associated with rodent or avian sources. There were not sufficient genomes to identify whether porcine isolates formed their own genetic clade. However, human isolates did not form a distinct clade. Functional enrichment analysis revealed significant enrichment of several genes, including surface proteins and accessory secretory pathway-related genes, as well as tyrosine decarboxylase genes in rodent isolates compared to avian isolates, including in mouse isolate MR1. A total of 40 genes were identified as rodent-associated, and all were transcriptionally active in L. johnsonii MR1. The global transcriptomic analysis of L. johnsonii MR1 was done using cells grown anaerobically, at 37˚C, under both the late-exponential phase and stationary phase, as well as during in vivo growth in the cecum of mono-colonized germ-free mice. Several of these genes were uniquely regulated during late exponential vs stationary phase growth and in vivo colonization in mice, highlighting their potential role in nutrient adaptation and host-microbe interactions.IMPORTANCELactobacillus johnsonii is a well-known probiotic species with health-beneficial properties, including host immunomodulation and pathogen inhibition. Its growing relevance in the medical industry highlights the need to understand its biology, particularly how it adapts to different host environments. In bacteria, niche adaptation is often accompanied by the loss or gain of coding sequences along with changes in the genome size. In this study, we explored the genetic diversity of L. johnsonii strains from the gastrointestinal tracts of various vertebrates such as rodents, birds, swine, and humans. We found associations between genome content and host species of origin and could conceptually demonstrate that these genes are being differentially transcribed under varying conditions. Several functions were associated with specific host groups, suggesting that L. johnsonii strains have adapted to their hosts over time.
期刊介绍:
mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.