Krithika P Karthigeyan, Megan Connors, Christian R Binuya, Mackensie Gross, Adelaide S Fuller, Chelsea M Crooks, Hsuan-Yuan Wang, Madeline R Sponholtz, Patrick O Byrne, Savannah Herbek, Caroline Andy, Linda M Gerber, John D Campbell, Caitlin A Williams, Elizabeth Mitchell, Lara van der Maas, Itzayana Miller, Dong Yu, Matthew J Bottomley, Jason S McLellan, Sallie R Permar
{"title":"人巨细胞病毒融合样糖蛋白B亚单位疫苗在小鼠体内引起与融合后的gB相似的体液免疫。","authors":"Krithika P Karthigeyan, Megan Connors, Christian R Binuya, Mackensie Gross, Adelaide S Fuller, Chelsea M Crooks, Hsuan-Yuan Wang, Madeline R Sponholtz, Patrick O Byrne, Savannah Herbek, Caroline Andy, Linda M Gerber, John D Campbell, Caitlin A Williams, Elizabeth Mitchell, Lara van der Maas, Itzayana Miller, Dong Yu, Matthew J Bottomley, Jason S McLellan, Sallie R Permar","doi":"10.1128/jvi.02178-24","DOIUrl":null,"url":null,"abstract":"<p><p>Human cytomegalovirus (HCMV) is the leading infectious cause of birth defects. Despite the global disease burden, there is no Food and Drug Administration (FDA)-approved HCMV vaccine. The most efficacious HCMV vaccine candidates to date have used glycoprotein B (gB), a class III viral fusion protein, in its postfusion form. While some viral fusion proteins have been shown to elicit stronger neutralizing responses in their prefusion conformation, HCMV prefusion-like and postfusion gB were recently shown to elicit antibodies with similar fibroblast neutralization titers in mice. We aimed to define and compare the specificity and functionality of plasma IgG elicited by distinct prefusion-like and postfusion gB constructs. Prefusion-like and postfusion gB elicited comparable IgG responses that predominantly mapped to the AD-5 antigenic domain known to elicit neutralizing antibodies. Interestingly, postfusion gB elicited significantly higher plasma IgG binding to cell-associated gB and antibody-dependent cellular phagocytosis than that of prefusion-like gB. The vaccines elicited comparable neutralization titers of heterologous HCMV strain AD169r in fibroblasts; however, neither elicited neutralizing titers against the vaccine-matched strain Towne in fibroblasts. Our data indicate that gB in this prefusion-like conformation elicits similar specificity and functional humoral immunity to that of postfusion gB, unlike certain class I viral fusion proteins that have been used as vaccine antigens. These findings deepen our understanding of the immune response elicited by class III fusion proteins and may inform further design and testing of conformationally dependent herpesvirus glycoprotein vaccine candidates.IMPORTANCEVaccines against human cytomegalovirus (HCMV) still remain elusive in spite of the high disease burden of the virus, especially in pre-term infants and immunocompromised individuals. While vaccine efforts have focused on vaccine-induced antibodies to neutralize the virus, studies have increasingly shown the importance of other antibody functions in protection against cytomegalovirus (CMV) transmission. In this study, we comprehensively evaluated immune responses elicited by the prefusion state of an important HCMV protein called glycoprotein B (gB) in mice. Our results indicate that prefusion gB elicits immune responses similar to that of postfusion gB in mice and reveals areas for further redesign and testing for prefusion vaccine antigens against CMV and other herpesviruses, which could help in furthering vaccine development against HCMV.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0217824"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A human cytomegalovirus prefusion-like glycoprotein B subunit vaccine elicits humoral immunity similar to that of postfusion gB in mice.\",\"authors\":\"Krithika P Karthigeyan, Megan Connors, Christian R Binuya, Mackensie Gross, Adelaide S Fuller, Chelsea M Crooks, Hsuan-Yuan Wang, Madeline R Sponholtz, Patrick O Byrne, Savannah Herbek, Caroline Andy, Linda M Gerber, John D Campbell, Caitlin A Williams, Elizabeth Mitchell, Lara van der Maas, Itzayana Miller, Dong Yu, Matthew J Bottomley, Jason S McLellan, Sallie R Permar\",\"doi\":\"10.1128/jvi.02178-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human cytomegalovirus (HCMV) is the leading infectious cause of birth defects. Despite the global disease burden, there is no Food and Drug Administration (FDA)-approved HCMV vaccine. The most efficacious HCMV vaccine candidates to date have used glycoprotein B (gB), a class III viral fusion protein, in its postfusion form. While some viral fusion proteins have been shown to elicit stronger neutralizing responses in their prefusion conformation, HCMV prefusion-like and postfusion gB were recently shown to elicit antibodies with similar fibroblast neutralization titers in mice. We aimed to define and compare the specificity and functionality of plasma IgG elicited by distinct prefusion-like and postfusion gB constructs. Prefusion-like and postfusion gB elicited comparable IgG responses that predominantly mapped to the AD-5 antigenic domain known to elicit neutralizing antibodies. Interestingly, postfusion gB elicited significantly higher plasma IgG binding to cell-associated gB and antibody-dependent cellular phagocytosis than that of prefusion-like gB. The vaccines elicited comparable neutralization titers of heterologous HCMV strain AD169r in fibroblasts; however, neither elicited neutralizing titers against the vaccine-matched strain Towne in fibroblasts. Our data indicate that gB in this prefusion-like conformation elicits similar specificity and functional humoral immunity to that of postfusion gB, unlike certain class I viral fusion proteins that have been used as vaccine antigens. These findings deepen our understanding of the immune response elicited by class III fusion proteins and may inform further design and testing of conformationally dependent herpesvirus glycoprotein vaccine candidates.IMPORTANCEVaccines against human cytomegalovirus (HCMV) still remain elusive in spite of the high disease burden of the virus, especially in pre-term infants and immunocompromised individuals. While vaccine efforts have focused on vaccine-induced antibodies to neutralize the virus, studies have increasingly shown the importance of other antibody functions in protection against cytomegalovirus (CMV) transmission. In this study, we comprehensively evaluated immune responses elicited by the prefusion state of an important HCMV protein called glycoprotein B (gB) in mice. Our results indicate that prefusion gB elicits immune responses similar to that of postfusion gB in mice and reveals areas for further redesign and testing for prefusion vaccine antigens against CMV and other herpesviruses, which could help in furthering vaccine development against HCMV.</p>\",\"PeriodicalId\":17583,\"journal\":{\"name\":\"Journal of Virology\",\"volume\":\" \",\"pages\":\"e0217824\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/jvi.02178-24\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.02178-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
A human cytomegalovirus prefusion-like glycoprotein B subunit vaccine elicits humoral immunity similar to that of postfusion gB in mice.
Human cytomegalovirus (HCMV) is the leading infectious cause of birth defects. Despite the global disease burden, there is no Food and Drug Administration (FDA)-approved HCMV vaccine. The most efficacious HCMV vaccine candidates to date have used glycoprotein B (gB), a class III viral fusion protein, in its postfusion form. While some viral fusion proteins have been shown to elicit stronger neutralizing responses in their prefusion conformation, HCMV prefusion-like and postfusion gB were recently shown to elicit antibodies with similar fibroblast neutralization titers in mice. We aimed to define and compare the specificity and functionality of plasma IgG elicited by distinct prefusion-like and postfusion gB constructs. Prefusion-like and postfusion gB elicited comparable IgG responses that predominantly mapped to the AD-5 antigenic domain known to elicit neutralizing antibodies. Interestingly, postfusion gB elicited significantly higher plasma IgG binding to cell-associated gB and antibody-dependent cellular phagocytosis than that of prefusion-like gB. The vaccines elicited comparable neutralization titers of heterologous HCMV strain AD169r in fibroblasts; however, neither elicited neutralizing titers against the vaccine-matched strain Towne in fibroblasts. Our data indicate that gB in this prefusion-like conformation elicits similar specificity and functional humoral immunity to that of postfusion gB, unlike certain class I viral fusion proteins that have been used as vaccine antigens. These findings deepen our understanding of the immune response elicited by class III fusion proteins and may inform further design and testing of conformationally dependent herpesvirus glycoprotein vaccine candidates.IMPORTANCEVaccines against human cytomegalovirus (HCMV) still remain elusive in spite of the high disease burden of the virus, especially in pre-term infants and immunocompromised individuals. While vaccine efforts have focused on vaccine-induced antibodies to neutralize the virus, studies have increasingly shown the importance of other antibody functions in protection against cytomegalovirus (CMV) transmission. In this study, we comprehensively evaluated immune responses elicited by the prefusion state of an important HCMV protein called glycoprotein B (gB) in mice. Our results indicate that prefusion gB elicits immune responses similar to that of postfusion gB in mice and reveals areas for further redesign and testing for prefusion vaccine antigens against CMV and other herpesviruses, which could help in furthering vaccine development against HCMV.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.