基于遗传和临床数据的机器学习对Nivolumab单药治疗晚期肾细胞癌的客观反应预测模型:snipc - rcc研究。

IF 3.3 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-04-01 Epub Date: 2025-04-25 DOI:10.1200/CCI-24-00167
Masaki Shiota, Shota Nemoto, Ryo Ikegami, Tokiyoshi Tanegashima, Leandro Blas, Hideaki Miyake, Masayuki Takahashi, Mototsugu Oya, Norihiko Tsuchiya, Naoya Masumori, Keita Kobayashi, Wataru Obara, Nobuo Shinohara, Kiyohide Fujimoto, Masahiro Nozawa, Kojiro Ohba, Chikara Ohyama, Katsuyoshi Hashine, Shusuke Akamatsu, Takanobu Motoshima, Koji Mita, Momokazu Gotoh, Shuichi Tatarano, Masato Fujisawa, Yoshihiko Tomita, Shoichiro Mukai, Keiichi Ito, Masatoshi Eto
{"title":"基于遗传和临床数据的机器学习对Nivolumab单药治疗晚期肾细胞癌的客观反应预测模型:snipc - rcc研究。","authors":"Masaki Shiota, Shota Nemoto, Ryo Ikegami, Tokiyoshi Tanegashima, Leandro Blas, Hideaki Miyake, Masayuki Takahashi, Mototsugu Oya, Norihiko Tsuchiya, Naoya Masumori, Keita Kobayashi, Wataru Obara, Nobuo Shinohara, Kiyohide Fujimoto, Masahiro Nozawa, Kojiro Ohba, Chikara Ohyama, Katsuyoshi Hashine, Shusuke Akamatsu, Takanobu Motoshima, Koji Mita, Momokazu Gotoh, Shuichi Tatarano, Masato Fujisawa, Yoshihiko Tomita, Shoichiro Mukai, Keiichi Ito, Masatoshi Eto","doi":"10.1200/CCI-24-00167","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Anti-PD-1 antibodies are widely used for cancer treatment, including in advanced renal cell carcinoma (RCC). However, the therapeutic response varies among patients. This study aimed to predict tumor response to nivolumab anti-PD-1 antibody treatment for advanced RCC by integrating genetic and clinical data using machine learning (ML).</p><p><strong>Methods: </strong>Clinical and single-nucleotide polymorphism (SNP) data obtained in the SNPs in nivolumab PD-1 inhibitor for RCC study, which enrolled Japanese patients treated with nivolumab monotherapy for advanced clear cell RCC, were used. A point-wise linear (PWL) algorithm, logistic regression with elastic-net regularization, and eXtreme Gradient Boosting were used in this study. AUC values for objective response and C-indices for progression-free survival (PFS) were calculated to evaluate the utility of the models.</p><p><strong>Results: </strong>Among the three ML algorithms, the AUC values to predict objective response were highest for the PWL algorithm among all the data sets. Three predictive models (clinical model, small SNP model, and large SNP model) were created by the PWL algorithm using the clinical data alone and using eight and 49 SNPs in addition to the clinical data. C-indices for PFS by the clinical model, small SNP model, and large SNP model were 0.522, 0.600, and 0.635, respectively.</p><p><strong>Conclusion: </strong>The results demonstrated that the SNP models created by ML produced excellent predictions of tumor response to nivolumab monotherapy for advanced clear cell RCC and will be helpful in treatment decisions.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400167"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Model of Objective Response to Nivolumab Monotherapy for Advanced Renal Cell Carcinoma by Machine Learning Using Genetic and Clinical Data: The SNiP-RCC Study.\",\"authors\":\"Masaki Shiota, Shota Nemoto, Ryo Ikegami, Tokiyoshi Tanegashima, Leandro Blas, Hideaki Miyake, Masayuki Takahashi, Mototsugu Oya, Norihiko Tsuchiya, Naoya Masumori, Keita Kobayashi, Wataru Obara, Nobuo Shinohara, Kiyohide Fujimoto, Masahiro Nozawa, Kojiro Ohba, Chikara Ohyama, Katsuyoshi Hashine, Shusuke Akamatsu, Takanobu Motoshima, Koji Mita, Momokazu Gotoh, Shuichi Tatarano, Masato Fujisawa, Yoshihiko Tomita, Shoichiro Mukai, Keiichi Ito, Masatoshi Eto\",\"doi\":\"10.1200/CCI-24-00167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Anti-PD-1 antibodies are widely used for cancer treatment, including in advanced renal cell carcinoma (RCC). However, the therapeutic response varies among patients. This study aimed to predict tumor response to nivolumab anti-PD-1 antibody treatment for advanced RCC by integrating genetic and clinical data using machine learning (ML).</p><p><strong>Methods: </strong>Clinical and single-nucleotide polymorphism (SNP) data obtained in the SNPs in nivolumab PD-1 inhibitor for RCC study, which enrolled Japanese patients treated with nivolumab monotherapy for advanced clear cell RCC, were used. A point-wise linear (PWL) algorithm, logistic regression with elastic-net regularization, and eXtreme Gradient Boosting were used in this study. AUC values for objective response and C-indices for progression-free survival (PFS) were calculated to evaluate the utility of the models.</p><p><strong>Results: </strong>Among the three ML algorithms, the AUC values to predict objective response were highest for the PWL algorithm among all the data sets. Three predictive models (clinical model, small SNP model, and large SNP model) were created by the PWL algorithm using the clinical data alone and using eight and 49 SNPs in addition to the clinical data. C-indices for PFS by the clinical model, small SNP model, and large SNP model were 0.522, 0.600, and 0.635, respectively.</p><p><strong>Conclusion: </strong>The results demonstrated that the SNP models created by ML produced excellent predictions of tumor response to nivolumab monotherapy for advanced clear cell RCC and will be helpful in treatment decisions.</p>\",\"PeriodicalId\":51626,\"journal\":{\"name\":\"JCO Clinical Cancer Informatics\",\"volume\":\"9 \",\"pages\":\"e2400167\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO Clinical Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1200/CCI-24-00167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI-24-00167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:抗pd -1抗体广泛用于癌症治疗,包括晚期肾细胞癌(RCC)。然而,治疗反应因患者而异。该研究旨在通过机器学习(ML)整合遗传和临床数据,预测晚期RCC患者对纳沃单抗pd -1抗体治疗的肿瘤反应。方法:使用nivolumab PD-1抑制剂用于RCC研究中获得的SNP的临床和单核苷酸多态性(SNP)数据,该研究纳入了接受nivolumab单药治疗晚期透明细胞RCC的日本患者。在本研究中使用了逐点线性(PWL)算法、弹性网络正则化逻辑回归和极端梯度增强。计算客观反应的AUC值和无进展生存期(PFS)的c指数,以评估模型的效用。结果:在3种ML算法中,PWL算法预测客观反应的AUC值最高。采用PWL算法,仅使用临床数据,在临床数据基础上分别使用8个和49个SNP,建立了临床模型、小SNP模型和大SNP模型3种预测模型。临床模型、小SNP模型和大SNP模型对PFS的c -指数分别为0.522、0.600和0.635。结论:结果表明,ML创建的SNP模型可以很好地预测肿瘤对纳沃单抗单药治疗晚期透明细胞RCC的反应,并将有助于治疗决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Model of Objective Response to Nivolumab Monotherapy for Advanced Renal Cell Carcinoma by Machine Learning Using Genetic and Clinical Data: The SNiP-RCC Study.

Purpose: Anti-PD-1 antibodies are widely used for cancer treatment, including in advanced renal cell carcinoma (RCC). However, the therapeutic response varies among patients. This study aimed to predict tumor response to nivolumab anti-PD-1 antibody treatment for advanced RCC by integrating genetic and clinical data using machine learning (ML).

Methods: Clinical and single-nucleotide polymorphism (SNP) data obtained in the SNPs in nivolumab PD-1 inhibitor for RCC study, which enrolled Japanese patients treated with nivolumab monotherapy for advanced clear cell RCC, were used. A point-wise linear (PWL) algorithm, logistic regression with elastic-net regularization, and eXtreme Gradient Boosting were used in this study. AUC values for objective response and C-indices for progression-free survival (PFS) were calculated to evaluate the utility of the models.

Results: Among the three ML algorithms, the AUC values to predict objective response were highest for the PWL algorithm among all the data sets. Three predictive models (clinical model, small SNP model, and large SNP model) were created by the PWL algorithm using the clinical data alone and using eight and 49 SNPs in addition to the clinical data. C-indices for PFS by the clinical model, small SNP model, and large SNP model were 0.522, 0.600, and 0.635, respectively.

Conclusion: The results demonstrated that the SNP models created by ML produced excellent predictions of tumor response to nivolumab monotherapy for advanced clear cell RCC and will be helpful in treatment decisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信