从时间序列染色质可及性数据推断差异蛋白结合。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-04-10 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf080
Sneha Mitra, Alexander J Hartemink
{"title":"从时间序列染色质可及性数据推断差异蛋白结合。","authors":"Sneha Mitra, Alexander J Hartemink","doi":"10.1093/bioadv/vbaf080","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Due to internal and external factors, the epigenomic landscape is constantly changing in ways that are linked to changes in gene expression. Chromatin accessibility data, such as MNase-seq, provide valuable insights into this landscape and have been used to compute chromatin occupancy profiles. Multiple datasets generated over time or under different conditions can thus be used to study dynamic changes in chromatin occupancy across the genome.</p><p><strong>Results: </strong>Our existing model, RoboCOP, computes a genome-wide chromatin occupancy profile for nucleosomes and hundreds of transcription factors. Here, we present a new method called DynaCOP that takes multiple chromatin occupancy profiles and uses them to generate a series of nucleosome-guided difference profiles. These profiles identify differentially binding transcription factors and reveal changes in nucleosome occupancy and positioning. We apply DynaCOP to chromatin occupancy profiles derived from deeply sequenced time-series MNase-seq data to study differential chromatin occupancy in the yeast genome under cadmium stress. We find strong correlations between the observed chromatin changes and changes in transcription.</p><p><strong>Availability and implementation: </strong>https://github.com/HarteminkLab/RoboCOP.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf080"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12037103/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inferring differential protein binding from time-series chromatin accessibility data.\",\"authors\":\"Sneha Mitra, Alexander J Hartemink\",\"doi\":\"10.1093/bioadv/vbaf080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Due to internal and external factors, the epigenomic landscape is constantly changing in ways that are linked to changes in gene expression. Chromatin accessibility data, such as MNase-seq, provide valuable insights into this landscape and have been used to compute chromatin occupancy profiles. Multiple datasets generated over time or under different conditions can thus be used to study dynamic changes in chromatin occupancy across the genome.</p><p><strong>Results: </strong>Our existing model, RoboCOP, computes a genome-wide chromatin occupancy profile for nucleosomes and hundreds of transcription factors. Here, we present a new method called DynaCOP that takes multiple chromatin occupancy profiles and uses them to generate a series of nucleosome-guided difference profiles. These profiles identify differentially binding transcription factors and reveal changes in nucleosome occupancy and positioning. We apply DynaCOP to chromatin occupancy profiles derived from deeply sequenced time-series MNase-seq data to study differential chromatin occupancy in the yeast genome under cadmium stress. We find strong correlations between the observed chromatin changes and changes in transcription.</p><p><strong>Availability and implementation: </strong>https://github.com/HarteminkLab/RoboCOP.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf080\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12037103/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:由于内部和外部因素,表观基因组景观以与基因表达变化相关的方式不断变化。染色质可及性数据,如MNase-seq,为这一领域提供了有价值的见解,并已被用于计算染色质占用谱。因此,随着时间的推移或在不同条件下产生的多个数据集可以用于研究整个基因组中染色质占用的动态变化。结果:我们现有的模型RoboCOP可以计算核小体和数百个转录因子的全基因组染色质占用谱。在这里,我们提出了一种名为DynaCOP的新方法,该方法采用多个染色质占用谱,并使用它们生成一系列核小体引导的差异谱。这些档案识别差异结合转录因子和揭示核小体占用和定位的变化。我们将DynaCOP应用于从深度测序时间序列MNase-seq数据中获得的染色质占用谱,以研究镉胁迫下酵母基因组中染色质占用的差异。我们发现在观察到的染色质变化和转录变化之间存在很强的相关性。可用性和实现:https://github.com/HarteminkLab/RoboCOP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring differential protein binding from time-series chromatin accessibility data.

Motivation: Due to internal and external factors, the epigenomic landscape is constantly changing in ways that are linked to changes in gene expression. Chromatin accessibility data, such as MNase-seq, provide valuable insights into this landscape and have been used to compute chromatin occupancy profiles. Multiple datasets generated over time or under different conditions can thus be used to study dynamic changes in chromatin occupancy across the genome.

Results: Our existing model, RoboCOP, computes a genome-wide chromatin occupancy profile for nucleosomes and hundreds of transcription factors. Here, we present a new method called DynaCOP that takes multiple chromatin occupancy profiles and uses them to generate a series of nucleosome-guided difference profiles. These profiles identify differentially binding transcription factors and reveal changes in nucleosome occupancy and positioning. We apply DynaCOP to chromatin occupancy profiles derived from deeply sequenced time-series MNase-seq data to study differential chromatin occupancy in the yeast genome under cadmium stress. We find strong correlations between the observed chromatin changes and changes in transcription.

Availability and implementation: https://github.com/HarteminkLab/RoboCOP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信