{"title":"用于检测23种心律失常并预测心血管结果的人工智能心电图的开发。","authors":"Wen-Yu Lin, Chin Lin, Wen-Cheng Liu, Wei-Ting Liu, Chiao-Hsiang Chang, Hung-Yi Chen, Chiao-Chin Lee, Yu-Cheng Chen, Chen-Shu Wu, Chia-Cheng Lee, Chih-Hung Wang, Chun-Cheng Liao, Chin-Sheng Lin","doi":"10.1007/s10916-025-02177-0","DOIUrl":null,"url":null,"abstract":"<p><p>Arrhythmias are common and can affect individuals with or without structural heart disease. Deep learning models (DLMs) have shown the ability to recognize arrhythmias using 12-lead electrocardiograms (ECGs). However, the limited types of arrhythmias and dataset robustness have hindered widespread adoption. This study aimed to develop a DLM capable of detecting various arrhythmias across diverse datasets. This algorithm development study utilized 22,130 ECGs, divided into development, tuning, validation, and competition sets. External validation was conducted on three open datasets (CODE-test, PTB-XL, CPSC2018) comprising 32,495 ECGs. The study also assessed the long-term risks of new-onset atrial fibrillation (AF), heart failure (HF), and mortality in individuals with false-positive AF detection by the DLM. In the validation set, the DLM achieved area under the receiver operating characteristic curve above 0.97 and sensitivity/specificity exceeding 90% across most arrhythmia classes. It demonstrated cardiologist-level performance, ranking first in balanced accuracy in a human-machine competition. External validation confirmed comparable performance. Individuals with false-positive AF detection had a significantly higher risk of new-onset AF (hazard ration [HR]: 1.69, 95% confidence interval [CI]: 1.11-2.59), HF (HR: 1.73, 95% CI: 1.20-2.51), and mortality (HR: 1.40, 95% CI: 1.02-1.92) compared to true-negative individuals after adjusting for age and sex. We developed an accurate DLM capable of detecting 23 cardiac arrhythmias across multiple datasets. This DLM serves as a valuable screening tool to aid physicians in identifying high-risk patients, with potential implications for early intervention and risk stratification.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"51"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an Artificial Intelligence-Enabled Electrocardiography to Detect 23 Cardiac Arrhythmias and Predict Cardiovascular Outcomes.\",\"authors\":\"Wen-Yu Lin, Chin Lin, Wen-Cheng Liu, Wei-Ting Liu, Chiao-Hsiang Chang, Hung-Yi Chen, Chiao-Chin Lee, Yu-Cheng Chen, Chen-Shu Wu, Chia-Cheng Lee, Chih-Hung Wang, Chun-Cheng Liao, Chin-Sheng Lin\",\"doi\":\"10.1007/s10916-025-02177-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arrhythmias are common and can affect individuals with or without structural heart disease. Deep learning models (DLMs) have shown the ability to recognize arrhythmias using 12-lead electrocardiograms (ECGs). However, the limited types of arrhythmias and dataset robustness have hindered widespread adoption. This study aimed to develop a DLM capable of detecting various arrhythmias across diverse datasets. This algorithm development study utilized 22,130 ECGs, divided into development, tuning, validation, and competition sets. External validation was conducted on three open datasets (CODE-test, PTB-XL, CPSC2018) comprising 32,495 ECGs. The study also assessed the long-term risks of new-onset atrial fibrillation (AF), heart failure (HF), and mortality in individuals with false-positive AF detection by the DLM. In the validation set, the DLM achieved area under the receiver operating characteristic curve above 0.97 and sensitivity/specificity exceeding 90% across most arrhythmia classes. It demonstrated cardiologist-level performance, ranking first in balanced accuracy in a human-machine competition. External validation confirmed comparable performance. Individuals with false-positive AF detection had a significantly higher risk of new-onset AF (hazard ration [HR]: 1.69, 95% confidence interval [CI]: 1.11-2.59), HF (HR: 1.73, 95% CI: 1.20-2.51), and mortality (HR: 1.40, 95% CI: 1.02-1.92) compared to true-negative individuals after adjusting for age and sex. We developed an accurate DLM capable of detecting 23 cardiac arrhythmias across multiple datasets. This DLM serves as a valuable screening tool to aid physicians in identifying high-risk patients, with potential implications for early intervention and risk stratification.</p>\",\"PeriodicalId\":16338,\"journal\":{\"name\":\"Journal of Medical Systems\",\"volume\":\"49 1\",\"pages\":\"51\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10916-025-02177-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02177-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Development of an Artificial Intelligence-Enabled Electrocardiography to Detect 23 Cardiac Arrhythmias and Predict Cardiovascular Outcomes.
Arrhythmias are common and can affect individuals with or without structural heart disease. Deep learning models (DLMs) have shown the ability to recognize arrhythmias using 12-lead electrocardiograms (ECGs). However, the limited types of arrhythmias and dataset robustness have hindered widespread adoption. This study aimed to develop a DLM capable of detecting various arrhythmias across diverse datasets. This algorithm development study utilized 22,130 ECGs, divided into development, tuning, validation, and competition sets. External validation was conducted on three open datasets (CODE-test, PTB-XL, CPSC2018) comprising 32,495 ECGs. The study also assessed the long-term risks of new-onset atrial fibrillation (AF), heart failure (HF), and mortality in individuals with false-positive AF detection by the DLM. In the validation set, the DLM achieved area under the receiver operating characteristic curve above 0.97 and sensitivity/specificity exceeding 90% across most arrhythmia classes. It demonstrated cardiologist-level performance, ranking first in balanced accuracy in a human-machine competition. External validation confirmed comparable performance. Individuals with false-positive AF detection had a significantly higher risk of new-onset AF (hazard ration [HR]: 1.69, 95% confidence interval [CI]: 1.11-2.59), HF (HR: 1.73, 95% CI: 1.20-2.51), and mortality (HR: 1.40, 95% CI: 1.02-1.92) compared to true-negative individuals after adjusting for age and sex. We developed an accurate DLM capable of detecting 23 cardiac arrhythmias across multiple datasets. This DLM serves as a valuable screening tool to aid physicians in identifying high-risk patients, with potential implications for early intervention and risk stratification.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.