Anas Shamsi, Moyad Shahwan, Sohaib Naseem Khan, Dharmendra Kumar Yadav, Nojood Altwaijry, Asimul Islam, Mohd Shahnawaz Khan
{"title":"从帕金森氏病治疗药物中鉴定环氧化物水解酶2的高亲和力抑制剂。","authors":"Anas Shamsi, Moyad Shahwan, Sohaib Naseem Khan, Dharmendra Kumar Yadav, Nojood Altwaijry, Asimul Islam, Mohd Shahnawaz Khan","doi":"10.1080/07391102.2025.2497448","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that leads to bradykinesia and rest tremors. While the molecular mechanisms underlying PD are not fully understood, rising evidence shows neuroinflammation as a key factor in dopaminergic neuron damage. The soluble epoxide hydrolase (sEH) has appeared as a key player in neuroinflammation associated with PD which represents itself as a promising drug target. Here, we employed a structure-based virtual screening methodology using repurposed drugs from the DrugBank database to identify high-affinity potential inhibitors of sEH. Results showed that two hit molecules, Fluspirilene and Penfluridol, demonstrated appreciable docking potential and specificity toward the sEH active site. These molecules exhibited favorable pharmacological properties and formed critical interactions with residues essential for sEH activity. Further, all-atom molecular dynamics (MD) simulations followed by principal component analysis and free energy landscape were carried out which provide deeper insights into the conformational stability and interaction mechanisms of sEH in complex with Fluspirilene and Penfluridol. The simulation results indicated that the interaction of sEH with Fluspirilene and Penfluridol contributed to the stabilization of its structure throughout the MD trajectories of 500 ns. These findings collectively suggest that Fluspirilene and Penfluridol hold potential as repurposed leads for the development of sEH inhibitors, which offer therapeutic implications for combating PD and other associated conditions.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-12"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of high-affinity inhibitors for epoxide hydrolase 2 from repurposed drugs in Parkinson's disease therapeutics.\",\"authors\":\"Anas Shamsi, Moyad Shahwan, Sohaib Naseem Khan, Dharmendra Kumar Yadav, Nojood Altwaijry, Asimul Islam, Mohd Shahnawaz Khan\",\"doi\":\"10.1080/07391102.2025.2497448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that leads to bradykinesia and rest tremors. While the molecular mechanisms underlying PD are not fully understood, rising evidence shows neuroinflammation as a key factor in dopaminergic neuron damage. The soluble epoxide hydrolase (sEH) has appeared as a key player in neuroinflammation associated with PD which represents itself as a promising drug target. Here, we employed a structure-based virtual screening methodology using repurposed drugs from the DrugBank database to identify high-affinity potential inhibitors of sEH. Results showed that two hit molecules, Fluspirilene and Penfluridol, demonstrated appreciable docking potential and specificity toward the sEH active site. These molecules exhibited favorable pharmacological properties and formed critical interactions with residues essential for sEH activity. Further, all-atom molecular dynamics (MD) simulations followed by principal component analysis and free energy landscape were carried out which provide deeper insights into the conformational stability and interaction mechanisms of sEH in complex with Fluspirilene and Penfluridol. The simulation results indicated that the interaction of sEH with Fluspirilene and Penfluridol contributed to the stabilization of its structure throughout the MD trajectories of 500 ns. These findings collectively suggest that Fluspirilene and Penfluridol hold potential as repurposed leads for the development of sEH inhibitors, which offer therapeutic implications for combating PD and other associated conditions.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2025.2497448\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2497448","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identification of high-affinity inhibitors for epoxide hydrolase 2 from repurposed drugs in Parkinson's disease therapeutics.
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that leads to bradykinesia and rest tremors. While the molecular mechanisms underlying PD are not fully understood, rising evidence shows neuroinflammation as a key factor in dopaminergic neuron damage. The soluble epoxide hydrolase (sEH) has appeared as a key player in neuroinflammation associated with PD which represents itself as a promising drug target. Here, we employed a structure-based virtual screening methodology using repurposed drugs from the DrugBank database to identify high-affinity potential inhibitors of sEH. Results showed that two hit molecules, Fluspirilene and Penfluridol, demonstrated appreciable docking potential and specificity toward the sEH active site. These molecules exhibited favorable pharmacological properties and formed critical interactions with residues essential for sEH activity. Further, all-atom molecular dynamics (MD) simulations followed by principal component analysis and free energy landscape were carried out which provide deeper insights into the conformational stability and interaction mechanisms of sEH in complex with Fluspirilene and Penfluridol. The simulation results indicated that the interaction of sEH with Fluspirilene and Penfluridol contributed to the stabilization of its structure throughout the MD trajectories of 500 ns. These findings collectively suggest that Fluspirilene and Penfluridol hold potential as repurposed leads for the development of sEH inhibitors, which offer therapeutic implications for combating PD and other associated conditions.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.