用偏微分方程计算疾病逗留密度来评价半马尔可夫过程和其他流行病学时间-事件模型。

IF 3.1 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Joachim Worthington, Eleonora Feletto, Emily He, Stephen Wade, Barbara de Graaff, Anh Le Tuan Nguyen, Jacob George, Karen Canfell, Michael Caruana
{"title":"用偏微分方程计算疾病逗留密度来评价半马尔可夫过程和其他流行病学时间-事件模型。","authors":"Joachim Worthington, Eleonora Feletto, Emily He, Stephen Wade, Barbara de Graaff, Anh Le Tuan Nguyen, Jacob George, Karen Canfell, Michael Caruana","doi":"10.1177/0272989X251333398","DOIUrl":null,"url":null,"abstract":"<p><p>IntroductionEpidemiological models benefit from incorporating detailed time-to-event data to understand how disease risk evolves. For example, decompensation risk in liver cirrhosis depends on sojourn time spent with cirrhosis. Semi-Markov and related models capture these details by modeling time-to-event distributions based on published survival data. However, implementations of semi-Markov processes rely on Monte Carlo sampling methods, which increase computational requirements and introduce stochastic variability. Explicitly calculating the evolving transition likelihood can avoid these issues and provide fast, reliable estimates.MethodsWe present the sojourn time density framework for computing semi-Markov and related models by calculating the evolving sojourn time probability density as a system of partial differential equations. The framework is parametrized by commonly used hazard and models the distribution of current disease state and sojourn time. We describe the mathematical background, a numerical method for computation, and an example model of liver disease.ResultsModels developed with the sojourn time density framework can directly incorporate time-to-event data and serial events in a deterministic system. This increases the level of potential model detail over Markov-type models, improves parameter identifiability, and reduces computational burden and stochastic uncertainty compared with Monte Carlo methods. The example model of liver disease was able to accurately reproduce targets without extensive calibration or fitting and required minimal computational burden.ConclusionsExplicitly modeling sojourn time distribution allows us to represent semi-Markov systems using detailed survival data from epidemiological studies without requiring sampling, avoiding the need for calibration, reducing computational time, and allowing for more robust probabilistic sensitivity analyses.HighlightsTime-inhomogeneous semi-Markov models and other time-to-event-based modeling approaches can capture risks that evolve over time spent with a disease.We describe an approach to computing these models that represents them as partial differential equations representing the evolution of the sojourn time probability density.This sojourn time density framework incorporates complex data sources on competing risks and serial events while minimizing computational complexity.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"272989X251333398"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Semi-Markov Processes and Other Epidemiological Time-to-Event Models by Computing Disease Sojourn Density as Partial Differential Equations.\",\"authors\":\"Joachim Worthington, Eleonora Feletto, Emily He, Stephen Wade, Barbara de Graaff, Anh Le Tuan Nguyen, Jacob George, Karen Canfell, Michael Caruana\",\"doi\":\"10.1177/0272989X251333398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>IntroductionEpidemiological models benefit from incorporating detailed time-to-event data to understand how disease risk evolves. For example, decompensation risk in liver cirrhosis depends on sojourn time spent with cirrhosis. Semi-Markov and related models capture these details by modeling time-to-event distributions based on published survival data. However, implementations of semi-Markov processes rely on Monte Carlo sampling methods, which increase computational requirements and introduce stochastic variability. Explicitly calculating the evolving transition likelihood can avoid these issues and provide fast, reliable estimates.MethodsWe present the sojourn time density framework for computing semi-Markov and related models by calculating the evolving sojourn time probability density as a system of partial differential equations. The framework is parametrized by commonly used hazard and models the distribution of current disease state and sojourn time. We describe the mathematical background, a numerical method for computation, and an example model of liver disease.ResultsModels developed with the sojourn time density framework can directly incorporate time-to-event data and serial events in a deterministic system. This increases the level of potential model detail over Markov-type models, improves parameter identifiability, and reduces computational burden and stochastic uncertainty compared with Monte Carlo methods. The example model of liver disease was able to accurately reproduce targets without extensive calibration or fitting and required minimal computational burden.ConclusionsExplicitly modeling sojourn time distribution allows us to represent semi-Markov systems using detailed survival data from epidemiological studies without requiring sampling, avoiding the need for calibration, reducing computational time, and allowing for more robust probabilistic sensitivity analyses.HighlightsTime-inhomogeneous semi-Markov models and other time-to-event-based modeling approaches can capture risks that evolve over time spent with a disease.We describe an approach to computing these models that represents them as partial differential equations representing the evolution of the sojourn time probability density.This sojourn time density framework incorporates complex data sources on competing risks and serial events while minimizing computational complexity.</p>\",\"PeriodicalId\":49839,\"journal\":{\"name\":\"Medical Decision Making\",\"volume\":\" \",\"pages\":\"272989X251333398\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Decision Making\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0272989X251333398\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0272989X251333398","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

流行病学模型受益于纳入详细的事件发生时间数据,以了解疾病风险如何演变。例如,肝硬化失代偿风险取决于与肝硬化共处的时间。半马尔可夫模型和相关模型通过基于公布的生存数据建模时间到事件的分布来捕捉这些细节。然而,半马尔可夫过程的实现依赖于蒙特卡罗采样方法,这增加了计算需求并引入了随机可变性。显式地计算不断变化的转换可能性可以避免这些问题,并提供快速、可靠的估计。方法通过将演化的逗留时间概率密度作为一个偏微分方程组来计算,提出了计算半马尔可夫模型的逗留时间密度框架及相关模型。该框架采用常用的危害参数化,并对当前疾病状态和停留时间的分布进行建模。我们描述了数学背景,一种数值计算方法,以及一个肝脏疾病的例子模型。结果利用逗留时间密度框架建立的模型可以直接将确定性系统中的时间到事件数据和序列事件结合起来。与马尔可夫模型相比,这增加了潜在模型细节的水平,提高了参数可辨识性,并且与蒙特卡罗方法相比减少了计算负担和随机不确定性。肝脏疾病的示例模型能够准确地再现靶标,而无需大量校准或拟合,并且需要最小的计算负担。明确建模逗留时间分布使我们能够使用流行病学研究的详细生存数据来表示半马尔可夫系统,而无需采样,避免了校准的需要,减少了计算时间,并允许更稳健的概率敏感性分析。highlighttime非同质半马尔可夫模型和其他基于时间到事件的建模方法可以捕获随着疾病时间推移而演变的风险。我们描述了一种计算这些模型的方法,该方法将它们表示为代表逗留时间概率密度演变的偏微分方程。该逗留时间密度框架结合了竞争风险和序列事件的复杂数据源,同时最小化了计算复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Semi-Markov Processes and Other Epidemiological Time-to-Event Models by Computing Disease Sojourn Density as Partial Differential Equations.

IntroductionEpidemiological models benefit from incorporating detailed time-to-event data to understand how disease risk evolves. For example, decompensation risk in liver cirrhosis depends on sojourn time spent with cirrhosis. Semi-Markov and related models capture these details by modeling time-to-event distributions based on published survival data. However, implementations of semi-Markov processes rely on Monte Carlo sampling methods, which increase computational requirements and introduce stochastic variability. Explicitly calculating the evolving transition likelihood can avoid these issues and provide fast, reliable estimates.MethodsWe present the sojourn time density framework for computing semi-Markov and related models by calculating the evolving sojourn time probability density as a system of partial differential equations. The framework is parametrized by commonly used hazard and models the distribution of current disease state and sojourn time. We describe the mathematical background, a numerical method for computation, and an example model of liver disease.ResultsModels developed with the sojourn time density framework can directly incorporate time-to-event data and serial events in a deterministic system. This increases the level of potential model detail over Markov-type models, improves parameter identifiability, and reduces computational burden and stochastic uncertainty compared with Monte Carlo methods. The example model of liver disease was able to accurately reproduce targets without extensive calibration or fitting and required minimal computational burden.ConclusionsExplicitly modeling sojourn time distribution allows us to represent semi-Markov systems using detailed survival data from epidemiological studies without requiring sampling, avoiding the need for calibration, reducing computational time, and allowing for more robust probabilistic sensitivity analyses.HighlightsTime-inhomogeneous semi-Markov models and other time-to-event-based modeling approaches can capture risks that evolve over time spent with a disease.We describe an approach to computing these models that represents them as partial differential equations representing the evolution of the sojourn time probability density.This sojourn time density framework incorporates complex data sources on competing risks and serial events while minimizing computational complexity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Decision Making
Medical Decision Making 医学-卫生保健
CiteScore
6.50
自引率
5.60%
发文量
146
审稿时长
6-12 weeks
期刊介绍: Medical Decision Making offers rigorous and systematic approaches to decision making that are designed to improve the health and clinical care of individuals and to assist with health care policy development. Using the fundamentals of decision analysis and theory, economic evaluation, and evidence based quality assessment, Medical Decision Making presents both theoretical and practical statistical and modeling techniques and methods from a variety of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信