Jordan Revol, Sigert Ariens, Ginette Lafit, Janne Adolf, Eva Ceulemans
{"title":"情景-偶然经验-抽样设计,用于自回归动力学的准确估计。","authors":"Jordan Revol, Sigert Ariens, Ginette Lafit, Janne Adolf, Eva Ceulemans","doi":"10.1037/met0000758","DOIUrl":null,"url":null,"abstract":"<p><p>Affect dynamics are often studied by means of first-order autoregressive (AR) modeling applied to intensive longitudinal data. A key target in these studies is the AR parameter, which is often tied conceptually to regulatory behavior in the affective process. The data are typically gathered using experience sampling methods, which are designed to pick up on fluctuations in affective variables as they evolve over time in naturalistic settings. In this article, we compare classical time-contingent sampling designs to episode-contingent sampling designs, which initiate sampling when an emotional episode has been signaled. We define emotional episodes as periods where an affective process strays relatively far away from its mean. Compared to time-contingent designs, episode-contingent designs leverage on increased affective variability, which can have beneficial implications for the precision of the ordinary least squares AR effect estimator. Using an extensive simulation study, we attempt to delineate which characteristics of an episode-contingent design are important to consider, and how these characteristics are related to estimation benefits. We then turn to an empirical illustration, showing how an episode-contingent design can be implemented in practice. We also show that various patterns we expect based on the theoretical parts of the article are recovered in the data. We conclude that episode-contingent designs can have marked benefits for the precision of the AR effect estimator, and discuss a number of challenges when it comes to implementing episode-contingent designs in practice. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Episode-contingent experience-sampling designs for accurate estimates of autoregressive dynamics.\",\"authors\":\"Jordan Revol, Sigert Ariens, Ginette Lafit, Janne Adolf, Eva Ceulemans\",\"doi\":\"10.1037/met0000758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Affect dynamics are often studied by means of first-order autoregressive (AR) modeling applied to intensive longitudinal data. A key target in these studies is the AR parameter, which is often tied conceptually to regulatory behavior in the affective process. The data are typically gathered using experience sampling methods, which are designed to pick up on fluctuations in affective variables as they evolve over time in naturalistic settings. In this article, we compare classical time-contingent sampling designs to episode-contingent sampling designs, which initiate sampling when an emotional episode has been signaled. We define emotional episodes as periods where an affective process strays relatively far away from its mean. Compared to time-contingent designs, episode-contingent designs leverage on increased affective variability, which can have beneficial implications for the precision of the ordinary least squares AR effect estimator. Using an extensive simulation study, we attempt to delineate which characteristics of an episode-contingent design are important to consider, and how these characteristics are related to estimation benefits. We then turn to an empirical illustration, showing how an episode-contingent design can be implemented in practice. We also show that various patterns we expect based on the theoretical parts of the article are recovered in the data. We conclude that episode-contingent designs can have marked benefits for the precision of the AR effect estimator, and discuss a number of challenges when it comes to implementing episode-contingent designs in practice. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000758\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000758","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
影响动力学通常是通过一阶自回归(AR)模型对大量纵向数据进行研究。这些研究中的一个关键目标是AR参数,它通常在概念上与情感过程中的调节行为联系在一起。这些数据通常是用经验抽样方法收集的,这种方法的设计目的是在自然环境中,随着时间的推移,捕捉情感变量的波动。在这篇文章中,我们比较了经典的时间偶然抽样设计和情景偶然抽样设计,后者在情绪事件被暗示时启动抽样。我们将情感事件定义为情感过程相对远离其平均值的时期。与时间偶然设计相比,情景偶然设计利用了增加的情感变异性,这对普通最小二乘AR效应估计器的精度有有益的影响。通过广泛的模拟研究,我们试图描述情景-偶然设计的哪些特征是需要考虑的,以及这些特征如何与评估收益相关。然后,我们转向实证说明,展示如何在实践中实施情节-偶然设计。我们还表明,我们根据文章的理论部分所期望的各种模式在数据中得到了恢复。我们得出结论,情景-偶然设计可以显著提高AR效应估计器的精度,并讨论了在实践中实施情景-偶然设计时面临的一些挑战。(PsycInfo Database Record (c) 2025 APA,版权所有)。
Episode-contingent experience-sampling designs for accurate estimates of autoregressive dynamics.
Affect dynamics are often studied by means of first-order autoregressive (AR) modeling applied to intensive longitudinal data. A key target in these studies is the AR parameter, which is often tied conceptually to regulatory behavior in the affective process. The data are typically gathered using experience sampling methods, which are designed to pick up on fluctuations in affective variables as they evolve over time in naturalistic settings. In this article, we compare classical time-contingent sampling designs to episode-contingent sampling designs, which initiate sampling when an emotional episode has been signaled. We define emotional episodes as periods where an affective process strays relatively far away from its mean. Compared to time-contingent designs, episode-contingent designs leverage on increased affective variability, which can have beneficial implications for the precision of the ordinary least squares AR effect estimator. Using an extensive simulation study, we attempt to delineate which characteristics of an episode-contingent design are important to consider, and how these characteristics are related to estimation benefits. We then turn to an empirical illustration, showing how an episode-contingent design can be implemented in practice. We also show that various patterns we expect based on the theoretical parts of the article are recovered in the data. We conclude that episode-contingent designs can have marked benefits for the precision of the AR effect estimator, and discuss a number of challenges when it comes to implementing episode-contingent designs in practice. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.