空间组学数据集中使用贝叶斯融合方法的空间共表达分析。

Souvik Seal, Brian Neelon
{"title":"空间组学数据集中使用贝叶斯融合方法的空间共表达分析。","authors":"Souvik Seal, Brian Neelon","doi":"10.1101/2025.03.29.646124","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in spatial omics technologies have enabled the measurement of expression profiles of different molecules, such as genes (using spatial transcriptomics), and peptides, lipids, or N-glycans (using mass spectrometry imaging), across thousands of spatial locations within a tissue. While identifying individual molecules with spatially variable expression is a well-studied statistical problem, robust methodologies for detecting spatially varying co-expression between molecule pairs remain limited. To address this gap, we introduce a Bayesian fused modeling framework for estimating molecular coexpression at both local (location-specific) and global (tissue-wide) levels, offering a refined understanding of cell-cell communication (CCC) mediated through ligand-receptor and other molecular interactions. Through extensive simulations, we demonstrate that our approach, termed SpaceBF, achieves superior specificity and power compared to existing methods that predominantly rely on geospatial metrics such as bivariate Moran's I and Lee's L. Applying our framework to real spatial transcriptomics and proteomics datasets, we uncover novel biological insights into molecular interactions across different cancers.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11996301/pdf/","citationCount":"0","resultStr":"{\"title\":\"SpaceBF: Spatial coexpression analysis using Bayesian Fused approaches in spatial omics datasets.\",\"authors\":\"Souvik Seal, Brian Neelon\",\"doi\":\"10.1101/2025.03.29.646124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancements in spatial omics technologies have enabled the measurement of expression profiles of different molecules, such as genes (using spatial transcriptomics), and peptides, lipids, or N-glycans (using mass spectrometry imaging), across thousands of spatial locations within a tissue. While identifying individual molecules with spatially variable expression is a well-studied statistical problem, robust methodologies for detecting spatially varying co-expression between molecule pairs remain limited. To address this gap, we introduce a Bayesian fused modeling framework for estimating molecular coexpression at both local (location-specific) and global (tissue-wide) levels, offering a refined understanding of cell-cell communication (CCC) mediated through ligand-receptor and other molecular interactions. Through extensive simulations, we demonstrate that our approach, termed SpaceBF, achieves superior specificity and power compared to existing methods that predominantly rely on geospatial metrics such as bivariate Moran's I and Lee's L. Applying our framework to real spatial transcriptomics and proteomics datasets, we uncover novel biological insights into molecular interactions across different cancers.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11996301/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.03.29.646124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.29.646124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空间组学技术的进步使得测量不同分子的表达谱成为可能,如基因(使用空间转录组学)、肽、脂质或n -聚糖(使用质谱成像),跨越组织内数千个空间位置。虽然识别具有空间变化表达的分子是一个研究得很好的统计问题,但检测分子对之间空间变化共表达的可靠方法仍然有限。为了解决这一差距,我们引入了一个贝叶斯融合建模框架,用于估计局部(特定位置)和全局(组织范围)水平的分子共表达,提供了对通过配体-受体和其他分子相互作用介导的细胞-细胞通信(CCC)的精细理解。通过广泛的模拟,我们证明,与主要依赖地理空间指标(如双变量Moran's I和Lee's l)的现有方法相比,我们的方法(称为SpaceBF)具有优越的特异性和能力。将我们的框架应用于真实的空间转录组学数据集,我们发现了不同癌症类型的CCC模式的新的生物学见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SpaceBF: Spatial coexpression analysis using Bayesian Fused approaches in spatial omics datasets.

Advancements in spatial omics technologies have enabled the measurement of expression profiles of different molecules, such as genes (using spatial transcriptomics), and peptides, lipids, or N-glycans (using mass spectrometry imaging), across thousands of spatial locations within a tissue. While identifying individual molecules with spatially variable expression is a well-studied statistical problem, robust methodologies for detecting spatially varying co-expression between molecule pairs remain limited. To address this gap, we introduce a Bayesian fused modeling framework for estimating molecular coexpression at both local (location-specific) and global (tissue-wide) levels, offering a refined understanding of cell-cell communication (CCC) mediated through ligand-receptor and other molecular interactions. Through extensive simulations, we demonstrate that our approach, termed SpaceBF, achieves superior specificity and power compared to existing methods that predominantly rely on geospatial metrics such as bivariate Moran's I and Lee's L. Applying our framework to real spatial transcriptomics and proteomics datasets, we uncover novel biological insights into molecular interactions across different cancers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信