机器人辅助经支气管介入治疗中的条件自主。

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Artur Banach, Fumitaro Masaki, Lambros Athanasiou, Franklin King, Hussein Kharroubi, Bassel Tfayli, Hisashi Tsukada, Yolonda Colson, Nobuhiko Hata
{"title":"机器人辅助经支气管介入治疗中的条件自主。","authors":"Artur Banach, Fumitaro Masaki, Lambros Athanasiou, Franklin King, Hussein Kharroubi, Bassel Tfayli, Hisashi Tsukada, Yolonda Colson, Nobuhiko Hata","doi":"10.1109/TBME.2025.3565915","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer is one of the leading causes of cancer-related deaths, and accurate staging is critical for determining the appropriate treatment. Robotic Navigation Bronchoscopy has shown advantages over traditional manual procedures, offering benefits in safety, efficiency, and accessibility. Although there is ongoing discussion regarding autonomous RNB, there is limited focus on the autonomy in advancing the bronchoscope. In this study, we introduce a novel method for conditional autonomy in advancing and aligning a robotic bronchoscope, which was validated in vitro, ex vivo, and in vivo. This conditional autonomy utilizes a monoscopic bronchoscopic view as input, with operators guiding the system by specifying the next airway to enter at branching points. The reachability of target lesions using this conditional autonomy was 73.3% in the phantom study and 77.5% in the ex vivo study. Statistical significance was found in success rates between bifurcations and trifurcations (p = 0.03) and across lobe segments (p = 0.005). The presence of breathing motion did not affect lesion reachability or the success of turns at branching points in the ex vivo studies. In the in vivo study, when comparing conditional automation to humanoperated navigation, the conditional automation took less time to reach the target lesions than human operators. The median time for passing each bifurcation was 2.5 seconds for human operators and 1.3 seconds for conditional automation. By improving precision and consistency in tissue sampling, this technology could redefine the standard of care for lung cancer patients, leading to more accurate diagnoses and therapies.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional Autonomy in Robot-Assisted Transbronchial Interventions.\",\"authors\":\"Artur Banach, Fumitaro Masaki, Lambros Athanasiou, Franklin King, Hussein Kharroubi, Bassel Tfayli, Hisashi Tsukada, Yolonda Colson, Nobuhiko Hata\",\"doi\":\"10.1109/TBME.2025.3565915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung cancer is one of the leading causes of cancer-related deaths, and accurate staging is critical for determining the appropriate treatment. Robotic Navigation Bronchoscopy has shown advantages over traditional manual procedures, offering benefits in safety, efficiency, and accessibility. Although there is ongoing discussion regarding autonomous RNB, there is limited focus on the autonomy in advancing the bronchoscope. In this study, we introduce a novel method for conditional autonomy in advancing and aligning a robotic bronchoscope, which was validated in vitro, ex vivo, and in vivo. This conditional autonomy utilizes a monoscopic bronchoscopic view as input, with operators guiding the system by specifying the next airway to enter at branching points. The reachability of target lesions using this conditional autonomy was 73.3% in the phantom study and 77.5% in the ex vivo study. Statistical significance was found in success rates between bifurcations and trifurcations (p = 0.03) and across lobe segments (p = 0.005). The presence of breathing motion did not affect lesion reachability or the success of turns at branching points in the ex vivo studies. In the in vivo study, when comparing conditional automation to humanoperated navigation, the conditional automation took less time to reach the target lesions than human operators. The median time for passing each bifurcation was 2.5 seconds for human operators and 1.3 seconds for conditional automation. By improving precision and consistency in tissue sampling, this technology could redefine the standard of care for lung cancer patients, leading to more accurate diagnoses and therapies.</p>\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBME.2025.3565915\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3565915","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

肺癌是癌症相关死亡的主要原因之一,准确的分期对于确定适当的治疗至关重要。机器人导航支气管镜检查显示出优于传统人工操作的优势,在安全性、效率和可及性方面具有优势。尽管关于自主支气管镜的讨论正在进行中,但对自主推进支气管镜的关注有限。在这项研究中,我们介绍了一种新的方法来实现机器人支气管镜的条件自主推进和对准,并在体外、离体和体内进行了验证。这种条件自主利用单镜支气管镜视图作为输入,操作员通过指定在分支点进入的下一个气道来指导系统。使用这种条件自主的目标病变可达性在假体研究中为73.3%,在离体研究中为77.5%。分岔和分岔之间的成功率(p = 0.03)和跨叶段的成功率(p = 0.005)具有统计学意义。在离体研究中,呼吸运动的存在并不影响病变的可达性或分支点转弯的成功。在体内研究中,当将条件自动化与人工操作导航进行比较时,条件自动化比人工操作所需的时间更短。人工操作人员通过每个分叉的平均时间为2.5秒,条件自动化操作人员为1.3秒。通过提高组织采样的精确度和一致性,这项技术可以重新定义肺癌患者的护理标准,从而实现更准确的诊断和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditional Autonomy in Robot-Assisted Transbronchial Interventions.

Lung cancer is one of the leading causes of cancer-related deaths, and accurate staging is critical for determining the appropriate treatment. Robotic Navigation Bronchoscopy has shown advantages over traditional manual procedures, offering benefits in safety, efficiency, and accessibility. Although there is ongoing discussion regarding autonomous RNB, there is limited focus on the autonomy in advancing the bronchoscope. In this study, we introduce a novel method for conditional autonomy in advancing and aligning a robotic bronchoscope, which was validated in vitro, ex vivo, and in vivo. This conditional autonomy utilizes a monoscopic bronchoscopic view as input, with operators guiding the system by specifying the next airway to enter at branching points. The reachability of target lesions using this conditional autonomy was 73.3% in the phantom study and 77.5% in the ex vivo study. Statistical significance was found in success rates between bifurcations and trifurcations (p = 0.03) and across lobe segments (p = 0.005). The presence of breathing motion did not affect lesion reachability or the success of turns at branching points in the ex vivo studies. In the in vivo study, when comparing conditional automation to humanoperated navigation, the conditional automation took less time to reach the target lesions than human operators. The median time for passing each bifurcation was 2.5 seconds for human operators and 1.3 seconds for conditional automation. By improving precision and consistency in tissue sampling, this technology could redefine the standard of care for lung cancer patients, leading to more accurate diagnoses and therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信