Agah Karakuzu, Nadia Blostein, Alex Valcourt Caron, Arnaud Boré, François Rheault, Maxime Descoteaux, Nikola Stikov
{"title":"通过模块化和便携式管道重新思考MRI作为测量设备。","authors":"Agah Karakuzu, Nadia Blostein, Alex Valcourt Caron, Arnaud Boré, François Rheault, Maxime Descoteaux, Nikola Stikov","doi":"10.1007/s10334-025-01245-3","DOIUrl":null,"url":null,"abstract":"<p><p>The premise of MRI as a reliable measurement device is limited by proprietary barriers and inconsistent implementations, which prevent the establishment of measurement uncertainties. As a result, biomedical studies that rely on these methods are plagued by systematic variance, undermining the perceived promise of quantitative imaging biomarkers (QIBs) and hindering their clinical translation. This review explores the added value of open-source measurement pipelines in minimizing variability sources that would otherwise remain unknown. First, we introduce a tiered benchmarking framework (from black-box to glass-box) that exposes how opacity at different workflow stages propagates measurement uncertainty. Second, we provide a concise glossary to promote consistent terminology for strategies that enhance reproducibility before acquisition or enable valid post-hoc pooling of QIBs. Building on this foundation, we present two illustrative measurement workflows that decouple workflow logic from the orchestration of computational processes in an MRI measurement pipeline, rooted in the core principles of modularity and portability. Designed as accessible entry points for implementation, these examples serve as practical guides, helping users adapt the frameworks to their specific needs and facilitating collaboration. Through critical evaluation of existing approaches, we discuss how standardized workflows can help identify outstanding challenges in translating glass-box frameworks into clinical scanner environments. Ultimately, achieving this goal will require coordinated efforts from QIB developers, regulators, industry partners, and clinicians alike.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rethinking MRI as a measurement device through modular and portable pipelines.\",\"authors\":\"Agah Karakuzu, Nadia Blostein, Alex Valcourt Caron, Arnaud Boré, François Rheault, Maxime Descoteaux, Nikola Stikov\",\"doi\":\"10.1007/s10334-025-01245-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The premise of MRI as a reliable measurement device is limited by proprietary barriers and inconsistent implementations, which prevent the establishment of measurement uncertainties. As a result, biomedical studies that rely on these methods are plagued by systematic variance, undermining the perceived promise of quantitative imaging biomarkers (QIBs) and hindering their clinical translation. This review explores the added value of open-source measurement pipelines in minimizing variability sources that would otherwise remain unknown. First, we introduce a tiered benchmarking framework (from black-box to glass-box) that exposes how opacity at different workflow stages propagates measurement uncertainty. Second, we provide a concise glossary to promote consistent terminology for strategies that enhance reproducibility before acquisition or enable valid post-hoc pooling of QIBs. Building on this foundation, we present two illustrative measurement workflows that decouple workflow logic from the orchestration of computational processes in an MRI measurement pipeline, rooted in the core principles of modularity and portability. Designed as accessible entry points for implementation, these examples serve as practical guides, helping users adapt the frameworks to their specific needs and facilitating collaboration. Through critical evaluation of existing approaches, we discuss how standardized workflows can help identify outstanding challenges in translating glass-box frameworks into clinical scanner environments. Ultimately, achieving this goal will require coordinated efforts from QIB developers, regulators, industry partners, and clinicians alike.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-025-01245-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-025-01245-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Rethinking MRI as a measurement device through modular and portable pipelines.
The premise of MRI as a reliable measurement device is limited by proprietary barriers and inconsistent implementations, which prevent the establishment of measurement uncertainties. As a result, biomedical studies that rely on these methods are plagued by systematic variance, undermining the perceived promise of quantitative imaging biomarkers (QIBs) and hindering their clinical translation. This review explores the added value of open-source measurement pipelines in minimizing variability sources that would otherwise remain unknown. First, we introduce a tiered benchmarking framework (from black-box to glass-box) that exposes how opacity at different workflow stages propagates measurement uncertainty. Second, we provide a concise glossary to promote consistent terminology for strategies that enhance reproducibility before acquisition or enable valid post-hoc pooling of QIBs. Building on this foundation, we present two illustrative measurement workflows that decouple workflow logic from the orchestration of computational processes in an MRI measurement pipeline, rooted in the core principles of modularity and portability. Designed as accessible entry points for implementation, these examples serve as practical guides, helping users adapt the frameworks to their specific needs and facilitating collaboration. Through critical evaluation of existing approaches, we discuss how standardized workflows can help identify outstanding challenges in translating glass-box frameworks into clinical scanner environments. Ultimately, achieving this goal will require coordinated efforts from QIB developers, regulators, industry partners, and clinicians alike.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.